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Abstract: This study investigates the design and implementation of all-optical synapse structures
using photonic crystal configurations with a triangular lattice of circular holes to enhance efficiency
and reduce the footprint of artificial synapses. The proposed structure uses phase change
materials (PCM), especially Ge2Sb2Te5 (GST), to tune the transmitted wavelength precisely.
Three-dimensional numerical simulations using the finite-difference time-domain (FDTD) and
finite-element-method (FEM) indicate that these structures provide high-performance waveguide
intersections with minimal cross-talk. Embedding two GST-PCM rods in this structure enables
a high contrast in resonance wavelength transition between amorphous and fully crystalline
states. By optimizing the radius of the GST-PCM rods, the highest contrast at the resonant
transmission wavelength is achieved, allowing dynamic control of the transmission rate through
changes in the crystallinity of the GST-PCM rods. The crystallinity is adjusted by varying the
power and duration of laser radiation, demonstrating the high controllability of these structures.
The proposed novel photonic crystal synapse structure combined with GST-PCM significantly
reduces the energy consumption and dimensions of the optical synapse, which are crucial for
developing artificial neural network devices, all-optical processors, and neuromorphic systems.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

In recent years, neuromorphic engineering [1–3] has emerged as an advanced and growing field
of computer science and optical engineering. The aim of this field, inspired by the human brain,
is to implement intelligent systems and process data using technologies such as artificial neurons
[4]. Recent research in neuromorphic engineering has concentrated on creating artificial neural
network models and synaptic structures [5] and has utilized various technologies to implement
artificial synapses, including memristors [6], field effect transistors (FETs) [7,8], phase change
memory [9–11], carbon nanotubes [12], and ferroelectric materials [13], and others [14–16].

Today, photonic neuromorphic structures have emerged in optical technologies, offering a new
approach for simulating biological neuron functions and enhancing neuromorphic computing
[17]. These structures use components, such as ring resonators [3,18–20], waveguides [21,22],
and Mach-Zehnder interferometers [23], which enable them to perform computational tasks with
higher speed and accuracy. Significant advances in optical and photonic technologies have led
to numerous innovations in the design of neuromorphic synapses [24–26]. These innovations
have enhanced the performance and efficiency of data processing systems, potentially increasing
speed and reducing their physical size. These synapses are particularly ideal for high-speed
and excellent-efficiency computing due to their high bandwidth and resistance to interference
[14,27,28]. Smaller sizes of photonic devices, improved optical responses, and optimization
of their structure can provide practical solutions for applications in optical integrated circuits
(OICs).

Recent advances in photonic synapses have focused on the detailed investigation of various
candidate materials [3,11,20,29,30], including metal oxides [31], perovskites [32], and nanoscale
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materials [33]. In addition, phase change materials [11,28,34] have attracted the most attention
in research efforts.

Photonic Mach-Zehnder memories using phase change materials have been proposed to
simulate multilayer perceptron (MLP) neural networks [35,36]. In addition, in Ref. [11], a
photonic synapse based on silicon waveguides and phase change materials (PCMs) is introduced,
which allows the adjustment of synaptic weight through optical pulses. In Ref. [20] and Ref. [30],
a synaptic network using PCM-based ring resonators is designed, which significantly improves
the pattern recognition capabilities in neuromorphic systems.

Photonic synapses, which utilize the unique properties of phase change materials, can control
the switching between crystalline and amorphous states. These materials can be triggered by the
application of electric fields, temperature changes, or light irradiation. This capability enables
researchers and engineers to precisely and control photonic synapses to perform diverse and
complex processing operations in optical information-processing systems. These synapses can
transmit light pulses of specific durations and energies to photonic structures containing phase
change materials, allowing for the adjustment and optimization of synaptic weights. These
capabilities enable the development of neuromorphic networks and support complex tasks such
as pattern recognition and optical signal processing, advancing neuromorphic technologies and
information-processing in areas like artificial neural network and image processing.

Recently, germanium-antimony-tellurium (GST) materials [21,37–41], with their unique
properties, have been very effective and efficient as one of the basic PCMs for creating
neuromorphic synapses [42]. The use of GST-PCMs, owing to their non-volatile nature opens up
significant opportunities for photonic neuromorphic computing and enables data writing and
erasing. This property enables researchers to modify the GST element across various crystal
states [43] and establish synapses with precise, adjustable weights, enhancing the performance
and efficiency of neuromorphic neural networks. The GST-PCMs are suitable for neuromorphic
applications due to their unique properties, including significant differences in the real and
imaginary parts of the refractive index between the amorphous and crystalline states, high
repeatability, and fast switching speed [44]. These properties enable researchers to manipulate the
state of these materials using various mechanisms such as electro-optical effects, thermal effects
or light pulse irradiation, and use these materials to construct photonic switches or controllable
synapses [45].

The development of phase-change synapse devices represents a significant advance in photonic
neuromorphic computing. A pioneering approach in optical neuromorphic computing involves
using photonic crystal-based optical synapses [28]. Photonic crystal (PhC) structures can be used
as an alternative to traditional silicon photonic devices due to their unique optical properties and
the ability to adjust the wavelength. These structures have precise control over optical frequencies
and can limit the propagation of light waves in certain ranges and improve efficiency, size and
power consumption in photonic integrated circuits (PIC) [46–48]. Photonic crystal technologies
have advanced significantly through innovative research methods, primarily due to their capability
to support compact and high-performance optical functionalities. These technologies are now
utilized in both space-constrained environments and general-purpose optical systems [49]. These
devices include various elements such as optical filters, sensors, amplifiers, all-optical memory
cells, modulators, phase comparators, and switches, which are widely used in photonic crystal
technology [50–54]. These elements play a crucial role in advanced technologies in this field by
enabling the development of photonic devices with high performance, small dimensions, and
compatibility with limited spaces [55,56].

In this paper, we focus on the design of an all-optical photonic crystal synapse structure.
These structures offer advantages such as increased efficiency and reduced dimensions and
technological complexity, which help to improve the performance and efficiency of optical-based
artificial neural networks. The main goal of this research is to provide a new method to create a
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synapse with high efficiency and minimal interference, increasing transmission and adapting
to the requirements of neuromorphic systems. In this research, numerical 3D simulation using
FEM and FDTD methods has been used. Previous studies have also confirmed the effectiveness
of using optical synapses based on photonic structures in neuromorphic processing systems
[24,28,57].

This research demonstrates that using photonic crystal structures as an efficient alternative to
silicon-based photonic devices can lead to improved performance and efficiency of low dimension
optical neural networks.

2. Perceptron neuron

Neurons are the main units of the central nervous system that receive, process and transmit
information. Each neuron has essential components such as dendrite, nucleus, axon, and synapse
(Fig. 1(a)). Dendrites are the branches that receive information from other neurons or peripheral
stimuli and transmit it to the nucleus, where it is processed. When stimuli reach a certain
threshold, the axon generates an action potential. Covered by a protective myelin layer, the
axon conducts the electrical signal quickly to the synapses. Finally, this electrical signal is
converted into a chemical signal at the synapses and transmitted to the next target neuron or cell.
This process allows neurons to efficiently and quickly share information throughout the nervous
system.

Fig. 1. Mechanism of a neuron. a) Biological neuron, the neuron receives information in
the form of chemical signals from dendrites. When the sum of the inputs received through
the dendrites is substantial enough to exceed the neuron’s threshold, the nucleus generates
an action potential. This action potential propagates along the axon with electrical changes.
Upon reaching the synapses, the action potential causes the release of neurotransmitters in
the synaptic space. b) A perceptron neuron. At each iteration step, blocks w1 to wn weigh
the input pulses, and then a summation block adds them together. An activation function
compares the sum of the weighted inputs with a threshold value, which ultimately results in
the generation of an output pulse in the neuron.

In an artificial perceptron neuron, incoming signals first pass through the neuron’s synapses.
Each of these synapses assigns a certain weight to the signals, which indicates their importance and
influence in the neuron’s decision-making process. After weighting, the signals are aggregated
together. Then an activation function such as sigmoid function processes the aggregated signal.
The activation function is critical in optical neuromorphic architectures because it allows neurons
to model complex behaviors by converting input signals into nonlinear outputs. In the last step,
the output of the activation function is compared with a threshold and the neuron produces an
output signal.

This process (Fig. 1(b)) is essential in optical neural networks designed to simulate the behavior
of biological neurons and optimize artificial neural computations.
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In supervised learning algorithms, the network compares the output with the actual value and
calculates the error rate. This error is usually measured using the mean squared error (MSE)
function. Then, techniques such as the delta rule adjust and update the synaptic weights. This
process involves the systematic modification of synaptic weights so that with each iteration,
the algorithm gradually reduces the network error and increases the overall performance and
accuracy of the neural network model.

Optimizing the weights through these algorithms lets the network to learn and produce more
accurate outputs gradually. This supervised learning process is essential in artificial neural
networks and optical neuromorphic systems, as it significantly increases the accuracy and
efficiency of the network.

The relationships of a perceptron neuron can be summarized by the following equations:

1- A sum of weighted inputs:

z =
n∑︂

i=1
wk

i xi (1)

where xi is the inputs, wi is the weight of synapses, and k is the number of epochs.

2- Activation function:
Predicted value = f (z) (2)

where f is the activation function.

3- Error calculation:
E =

1
2
(Predicted value − Actual value)2 (3)

4- Weight setting:
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)︄
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(4)

where η is the learning rate.

These equations describe the basic operations of a perceptron neuron, including input
accumulation, activation, error calculation, and weight adjustment.

3. Optical neuron mechanism

The operating speed of a silicon-based electronic perceptron neuron is limited by the electron
transfer rate. Today, all-optical artificial neurons have made significant improvements in the
performance speed of neuromorphic networks, so that these networks have found the ability to
respond in a few nanoseconds. This advancement is attributable to the utilization of optical
technologies such as optical waves for information transmission, which offer higher speeds
compared to electronics. Optical technologies not only increase the speed of operations, but also
facilitate parallel processing and greater efficiency in neural networks [57].

Although modern optical neuromorphic structures, such as ring resonators, waveguides,
and Y-junctions utilizing phase change materials, have improved and operate faster than their
electronic counterparts, they still have significant dimensions. This paper focuses on designing a
synaptic structure using photonic crystal structures, which are significantly smaller than other
optical neuromorphic structures.

As shown in Fig. 2, a continuous wave laser (CW-laser) generates the input optical signals
and applies them to the synapses of the all-optical photonic crystal. All-optical photonic crystal
synapses separate the wavelengths of each input signal that are tuned into the respective synapses
using a photonic crystal cavity filter. Then, a multiplexer block sums the weighted signals
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together. This process not only separates input signals based on wavelength but also adjusts the
amplitude range of the signals using PCM. This capability aids in adjusting synaptic weights and
facilitating communication between synapses.

Fig. 2. Electro-optic action mechanism of an artificial neuron with an all-optical synapse.

In the next step of the process, a photodetector (PD) converts the optical signals processed by
the photonic crystal synapses into electrical signals. The electrical signals are then fed to the
activation function unit, which acts as a processor and calculates the output of the neuron. After
the neuron’s output is calculated, it is compared to the actual (or expected) value in error unit.
Subsequently, a weighting and updating unit calculates the weight change rate for each synaptic
connection separately. Then, the electro-optic modulator (EOM) unit generates the correction
rate of each synaptic weight for the corresponding synapse. The output of this unit is applied to
the target synapse via the red pathway (as shown in Fig. 2). In each cycle of the above steps, the
synaptic weights are adjusted more accurately and the performance of the optical neural network
is optimized.

Each photonic crystal synapse detects the wavelength associated with the updated weight
signal using the cavity wavelength filtering capability. These synapses adjust their transmittance
rates using embedded PCM rods. In Fig. 2, the blue path represents the passage of the input
optical signal, while the red paths represent the update signals of the weight coefficients.

4. Photonic crystal synapse

In this paper, we have proposed an all-optical synapse structure based on photonic crystals due to
its much smaller dimensions compared to silicon-based structures. Previous studies [28] have
used square lattice photonic crystal structures as optical synapses, which have faced challenges
such as complexity in fabrication technology and high costs. Therefore, to address these issues,
the use of silicon slab triangular lattice photonic crystal structures with air holes, as shown in
Fig. 3, is proposed for improvement.

In comparison to the square photonic crystal structure that uses GaAs rods [28], the silicon-
based triangular-lattice photonic crystal structure with air holes offers significant advantages. The
use of silicon as the primary material not only simplifies the fabrication process but also reduces
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Fig. 3. Slab-hole type photonic crystal synapse. The proposed structure consists of silicon
material on a SiO2 substrate, which creates a photonic crystal waveguide intersection
structure by creating air holes. Holes A1 to A6 represent the radii of six critical holes
located along the waveguide path from port 1 to port 2, and are responsible for tuning the
transmission characteristics along this direction. The parameter “a” denotes the lattice
constant of the photonic crystal.

production costs. Additionally, replacing GaAs rods with air holes enhances the mechanical
stability of the structure, as air holes provide higher mechanical stability than GaAs rods. These
changes contribute to improved performance and cost reduction in the design of optical synapses.

4.1. Photonic crystal waveguide intersection

The proposed photonic crystal structure comprises circular air holes arranged in a triangular lattice
within a silicon slab with a refractive index of 3.49, featuring a lattice constant of a= 0.424 µm
and a thickness of 0.8a. Each hole has a radius of r= 0.259a. By ignoring the two paths of the
holes, horizontal and oblique waveguides (Fig. 4) are created in the proposed photonic crystal.
These are crossed at their junction to form a cavity filter structure capable of tuning the pass
wavelength resonance with minimal cross-talk.

In the proposed structure of Fig. 4, the radii of holes A2, A5, B2 and B5 are used to tune
the transmission wavelength, while holes A1, A6, B1, and B6 are used as scattering holes that
increase the transmission efficiency and reduce the full width at half maximum (FWHM). Holes
A3, A4, B3, and B4 are also used to prevent cross-talk in waveguides.

In addition, to optimize the structure and reduce cross-talk, the position and radius of colored
holes in Fig. 4 are optimized according to Table 1.

The transmission and cross-talk for the input states from ports 1 and 3 are shown in Fig. 5(a),
(b), respectively. As can be seen, the passing wavelength in each path shows single-mode
transmission, and more than 96% is transmitted from ports 1 to 2 at wavelength 1518 nm and
83% from ports 3 to 4 at wavelength 1594 nm. Also, the cross-talk is less than -25 dB and -51
dB respectively. The magnetic fields are shown in Fig. 5(a), (b) for the wavelength transmission
modes from ports 1 to 2 and ports 3 to 4, respectively. As it is known, the intensity of the
magnetic field in the cavity (intersection of waveguides) is maximum.

The FWHM and Q-factor [51] values are also obtained as 4.3 nm and 353 for the transfer from
ports 1 to 2, respectively. To evaluate and validate the simulations, the signal transmission from
ports 1 to 2 was simulated using FDTD and FEM methods and compared to coupled mode theory
(CMT), showing good agreement (Fig. 6(a)).
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Fig. 4. Intersection of triangular lattice photonic crystal waveguides. A two-dimensional
representation of the proposed structure is shown, which is created by ignoring the two paths
of the holes, the photonic crystal waveguide intersection.

Table 1. Optimized hole radius and displacement.

Hole Radius Hole Moving

A1, A6 0.177a A1, A6, C1, C6 0.04a away from the center of the structure

A2, A5 0.235a A2, A5, C2, C5 0.04a away from the center of the structure

A3, A4 0.245a A3, A4, C3, C4 0.18a away from the center of the structure

B1, B6 0.177a B1, B6 0.06a away from the center of the structure

B2∼B5 0.259a B2, B5 0.34a away from the center of the structure

C1∼C6 0.259a B3, B4 0.42a away from the center of the structure

D 0.259a D 0.11a away from the center of the waveguide

H 0.259a H 0.12a close to the center of the waveguide

In CMT, a structure is described based on the coupling between a cavity and waveguides, and
the transfer function is provided using cavity quality factors (Q) related to intrinsic loss (1/τi) and
waveguide coupling loss (1/τw) and represented as Qi = w0τi/2 and Qw = w0τw/2, respectively
[58]. W0 denotes the resonance frequency.

Since Qw denotes the quality factor of total waveguide coupling losses, in this proposed structure,
1/τw represents the coupling loss of both waveguides on the cavity’s sides (1/τw = 1/τwin+1/τwout ).

The cavity’s transfer function can be expressed as Eq. (5).

tf =
1/Qw

1/Qw + 1/Qi + 2jλn
(5)

where λn = (λ0 − λ)/λ represents the normalized wavelength and λ0 denotes the cavity resonance
wavelength.

Also, the transmittance T from port 1 to 2 can be expressed as Eq. (6).

T = |tf |2 (6)
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Fig. 5. (a) The magnetic field at the resonance wavelength and transmittance to port two
and leakage at ports 3 and 4 when a Gaussian source with TE polarization is launched from
port one, and (b) the magnetic field at the resonance wavelength and transmittance to port
four and leakage at ports 1 and 2 when a Gaussian source with TE polarization is launched
from port three.

Fig. 6. (a) Comparison of photonic crystal waveguide intersection transmission using CMT,
FDTD and FEM methods. (b) Transmission for different radii of holes A2 and A5 when
input from ports 1 to 2 is applied. A 20 nm change in the radii of holes A2 and A5 results in
a 7.2 nm change in resonant wavelength.

For the proposed structure, Qi and Qw were obtained as 23010 and 391, respectively.
Figure 6(b) shows the output transmission as a function of 20 nm variation in the radius of the

A2 and A5 holes. These results show that the resonant wavelength of the cavity can be easily
controlled and optimized by adjusting the radius of the A2 holes.

Fig. S1 shows the changes in the radius of holes A2, A5 and B2, B5, respectively, relative to
the launch to ports 1 and 3.

Table 2 provides a comparative analysis of our proposed structure against previous designs,
which shows that this structure has a smaller physical footprint and a significant reduction in
insertion loss. This structure not only improves the performance of optical devices, but also has
the potential to positively influence the development of advanced technologies in various fields,
including optical communications, data processing, and neural networks.
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Table 2. The comparison of optical waveguide intersection structures.

Year Structure
mecha-
nism

Footprint [µm2] Insertion
Loss [dB]

Cross-talk
[dB]

Ref.

2017 MDM 21× 21 0.46 -18 [59]

2017 cavity-like
star

5× 5 0.75 -22.5 [60]

2018 PDM 23× 23 1.2 -25 [61]

2018 cavity 4.8× 4.8 0.6 -24 [62]

2019 MFE lens 4.32× 4.32 0.32 -15 [63]

2019 PDM 6× 6 0.2 -28 [64]

2020 intersection 1.1× 1.1 0.26 -40 [65]

2020 cosine
tapers

4.7× 4.7 0.2 -35 [66]

2021 shaped-X 2× 2.2 0.2 -31 [67]

2022 multi-
channel

2× 2 0.47 -84.8 [68]

2023 MMI 13.6× 13.6 0.76 -37.8 [69]

2023 SWG 7.9× 5.9 0.229 -35.6 [70]

2024 cavity 2.97× 2.57 0.17 -25 This work

4.2. Photonic crystal synapse utilizing PCM rods

Figure 7(a) shows the Z-component of the magnetic field profile (Hz) when a gaussian source with
TE polarization is launched from port 1 and port 3. The maximum magnetic field is formed at
the resonance wavelength within the cavity, exhibiting even symmetry in the diagonal waveguide
path and odd quadrupole symmetry in the horizontal waveguide path.

Fig. 7. (a) Z-component of the magnetic field (HZ) during launches from ports 1 to 2
and from ports 3 to 4, (b) superposition of the Z-component of the magnetic field (HZ),
(c) photonic crystal synapse utilizing PCM rods. The Z-component of the magnetic field
shows a significant increase at two points (marked in dark red) when the signal is transmitted
through both the horizontal and diagonal waveguide paths.

It can be seen that the intensity of the magnetic field is maximum at the two common points of
the structure, where the cumulative effect of the Hz-field is the highest. These common points
have the greatest impact on the transfer from ports 1 to 2 and from ports 3 to 4.
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The combination of the Z-components of the magnetic fields (HZ) when launched from ports 1
and 3 results in a significant increase and intensification of the magnetic field at two specific
points (Fig. 7(b)). This process leads to overlapping and interference of magnetic fields at
these points, which leads to a significant increase in field intensity. By placing the PCM at the
common points of the magnetic fields, the percentage transmission of the resonant wavelength
in both waveguide paths can be precisely controlled. Figure 7(c) shows the proposed structure
equipped with PCM. In the proposed approach, GST (Ge2Sb2Te5) and GSST (Ge2Sb2Se4Te1)
materials have been used as PCM. These materials enable dynamic tuning of optical properties
and facilitate greater flexibility and efficiency in optical signal processing applications. Fig. S2
shows the graph of the real and imaginary parts of the refractive index for the GST and GSST
materials [20,35].

In the crystallization process of phase-change materials such as Ge2Sb2Te5, the crystallization
temperature (Tc) is the primary factor in initiating the transition from the amorphous to the
crystalline state. Specifically, for GST-PCM, the onset of crystallization, characterized by the
nucleation and subsequent growth of the crystalline lattice, occurs within a defined temperature
range of 413–423 °K [71,72].

In GST materials, when the temperature is increased to more than the crystallization temperature
(∼Tc > 420 °K) by applying long-duration light pulses, the material gradually transforms into a
crystalline state [73]. This phase change leads to a change in the refractive index and optical
properties the PCM material. Furthermore, at temperatures above the melting point (Tm = 873
°K), applying a short, high-power pulse followed by rapid cooling to prevent re-crystallization
can return the material to the amorphous state [74–76]. These properties introduce GST as
a non-volatile and temperature-sensitive material that can rapidly control the transmission of
optical signals by applying specific light pulses. Fig. S3 shows the phase diagram and transition
process between crystalline and amorphous states in GST materials [77].

The use of PCM materials in this structure changes the optical properties and light transmission
characteristics by changing the phase and refractive index of the PCM material in response to
temperature changes. This feature can lead to the control and optimization of resonant wavelength
transmission in these systems, which is very important in photonic and optical technologies.

Fig. S4 shows the transmission from ports 1 to 2 under the conditions of amorphous and
fully crystalline states for the radius variation of GST and GSST rods. The greatest contrast in
resonant wavelength transmission between the amorphous and fully crystalline states occurs with
an optimal rod radius of 85.5% for GST and 92.4% for GSST materials at rod radii of 61.9 nm
and 83.3 nm, respectively. The structure transmission modulation factor for GST and GSST
materials is shown using the figure of merit function (FOM) (Eq. (7)), which is 97.5% and 98%
for GST and GSST, respectively.

FOM % =
Tramorphous − − Trcrystal

Tramorphous + Trcrystal

× 100 (7)

where Tr is transmission.
In this approach, although the FOM value for GSST is higher than that of GST materials,

we have used GST materials for phase change materials due to the non-availability of specific
thermal equations for GSST.

The effective permittivity of GST is described based on the changes in the crystallization
coefficient of GST (0<β<1) based on the Lorentz–Lorenz equation in Eq. (8) [78]. In addition,
the changes in the crystallization coefficient of GST due to temperature (T) changes are also
calculated using Eq. (9) and Eq. (10) [74,79]. Therefore, by applying temperature to GST, both
the real (n) and imaginary (k) parts of the refractive index of GST can be changed according to
Eq. (11).

εef fGST (β) =
εa(εc + 2) + 2β(εc − εa)
εc + 2 − β(εc − εa)

(8)
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where εa and εc are amorphous and crystallization permittivity of GST, respectively.

β(T◦kelvin) =
eA

1 + eA (9)

A =
T◦kelvin − 615

30
(10)√︂

εef fGST (β) = n + ik (11)

One of the methods used to increase the temperature of GST materials is using laser beams
with predetermined parameters of power and duration. This approach is a practical tool to modify
the thermal and optical properties of GST materials. By fine-tuning the power and duration of
the laser applied to the GST material, the heating of the GST can be precisely controlled.

The laser intensity at the GST material’s depth can be calculated using the Beer-Lambert law
[80], as shown in Eq. (12).

IdGST = (1 − R)I0e−∝dGST (12)

where I0 represents the incident laser intensity, α is the material’s absorption coefficient, and
dGST is the depth within the GST. R denotes the reflectivity of the incident laser.

The temperature of the GST rods is calculated from the heat transfer equation [81,82] (Eq. (13)),
which incorporates laser power and duration.

ρcp
∂T
∂t
+ ρcpU.∇T = ∇.(k∇T) + Qrh (13)

Here, Qrh is considered resistive loss in the GST rods, which can be derived from Eqs. (14
-16). cp and ρ represent the specific heat capacity at constant pressure and the density of the
material, respectively.

Qrh =
1
2

Re(J.E∗) (14)

E =

√︄
2IdGST

Cε0n
(15)

J = 2nkwε0E (16)

where J is electric current density, E is electric field, C is the speed of light in a vacuum, ε0 is
permittivity of free space, and n and k represent the real and imaginary parts of the refractive
index of GST-PCM, respectively.

5. Discussion and comparisons

Figure 8(a) shows the transmission characteristics from ports 1 to 2 in terms of changes in the
crystallinity of the GST rods. By adjusting the GST crystallinity factor between 0 and 1, the light
transmission can be controlled between 0.01 and 0.86. In the proposed approach, the crystallinity
coefficient of the GST rods can be changed by using laser radiation with specific power and
duration from ports 3 to 4. Therefore, the transfer rate from ports 1 to 2 can be controlled
accordingly. Figure 8(b) shows the degree of crystallization of GST materials under different
crystallization coefficients using laser irradiation with 100 mW/µm2 from port 3. The graph
shows that adjusting the coefficient from 0-1 requires a laser irradiation time in the range of
0.2-0.9 ns. These findings emphasize the potential of laser irradiation as a precisely controlled
tool for crystallization changes of GST materials, making it highly applicable in optical synapses
and neuromorphic systems.
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Fig. 8. (a) Transmission of photonic crystal synapses for different crystallization coefficients.
(b) The crystallization degree of GST rods at different initial coefficients using 100 mW/µm2

laser irradiation from port 3. Complete crystallization of GST rods takes between 0.2-0.9 ns,
with the longest time observed in the fully amorphous state. (c) Transmission as a function
of the GST crystallization coefficient. (d) Derivative of optical transmission with respect to
the crystallization coefficient

To evaluate the sensitivity of the proposed structure to variations in the crystallization coefficient
of GST, the optical transmission as a function of crystallization level (Fig. 8(c)) and its derivative
(Fig. 8(d)) were analysed. The results indicate that the transmission response changes non-linearly
with β, with maximum sensitivity observed in the intermediate region of the curve.

Figure 9(a) shows the change of the crystallization coefficient in GST material in response to
changes in time and laser power applied from ports 3 to 4. It shows that increasing the laser power
reduces the time required to change the crystallization coefficient of GST materials. In other
words, higher laser power enables the crystallinity coefficient of GST material to be adjusted from
0-100% in less time. Figure 9(b) shows the change of the crystallization coefficient in GST-PCM
rods under laser irradiation with a power density of 100 mW/µm2. As shown in Fig. 9(b), laser
irradiation from 0-0.3 ns does not have much effect on the crystallinity change of GST-PCM rods.
Although the laser irradiation causes heating of the GST-PCM rods (the temperature profile is
also shown in Fig. 9(b)), the temperature of the GST-PCM rods remains below the crystallization
temperature of GST. After 0.3 ns of laser irradiation, the GST temperature reaches the desired
level to start the crystallization process, and the crystallization coefficient increases as described
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in Eq. (9). This process continues for 0.9 ns until the GST-PCM rods are fully crystallized. Also,
as shown in Fig. 9(a), with increasing laser power density, the time required for the crystallization
process decreases.

Fig. 9. (a) The effect of laser power density applied from port three on the crystallization
rate of GST materials. The time required for the crystallization of GST rods decreases
with the increase of the applied laser power density. Specifically, at a power density
of 175 mW/µm2, the time of the crystallization process varies between 0.2-0.8 ns. (b)
Thermal profile and crystallization process of GST rods as a function of time with a 100
mW/µm2 laser launched from port 3. Laser irradiation up to 0.3 ns has less effect on the
crystallization of GST-PCM rods. Although the GST temperature increases, it remains below
the crystallization temperature. After 0.3 ns, the temperature reaches the crystallization
point and the rods gradually crystallize.

It is important to note that the time reported in Figs. 8 and 9 refers to the duration of the
laser pulse applied with a specified power to raise the temperature of the GST region to the
crystallization temperature, not the complete crystallization process, which involves nucleation
and crystal growth.

Previous experimental studies [83,84] have demonstrated that the complete crystallization
time in GST layers typically occurs within tens of nanoseconds, a duration that is significantly
influenced by the material’s structure, dimensions, and the surrounding environment. These
investigations have provided insights into the entire crystallization mechanism, from the onset of
nucleation to the evolution of the crystalline structure, a phenomenon governed by the thermal
kinetics of the material.

The significant reduction in thermal mass at these scales results in a faster temperature
rise in the material, thereby reducing the time required to reach the crystallization threshold
temperature. Given the inverse relationship between heating rate and thermal mass, the use of
phase-changing elements at the nanoscale enables the material to reach the necessary temperature
for crystallization initiation with short laser pulses. Consequently, while the desired temperature
is achieved within sub-nanosecond timescales, the full crystallization process, as reported in
earlier studies, occurs over tens of nanoseconds.

Furthermore, based on the above considerations, in this study, the crystallization behaviour
of GST under the influence of rapid and high-power laser pulses has been modelled using
a temperature-dependent logistic function, as described by Eqs. (5) and (6). In contrast to
conventional time-dependent models such as the Johnson-Mehl-Avrami-Kolmogorov (JMAK)
equation [85,86], which analyse the kinetics of crystallization as a function of time, nucleation
rate, and crystal growth dimensionality, the model employed in this work focuses solely on the
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relationship between temperature and the estimated crystallization fraction at the end of the
heating phase.

In other words, this model estimates the extent to which the material crystallizes—relative to a
fully crystalline state—after the local temperature reaches a certain value, without analysing the
complete temporal evolution of the crystallization process, including growth and nucleation.

This approach is fully aligned with the primary objective of the present study, which is to
investigate the thermal stability and the resulting crystallization fraction of GST under rapid,
localized heating induced by an optical pulse. Within this framework, the laser pulse duration (as
shown in Fig. 9) is interpreted merely as the time required for the GST region to reach the target
temperature necessary to initiate crystallization, and not the total time needed to complete the
entire crystallization process. In contrast, the JMAK model can be employed in future studies to
further analyse the time-dependent dynamics of crystal growth after the material has reached the
critical temperature.

Additionally, the proposed structure utilizes GST regions with extremely small volumes, which,
due to their low thermal mass, experience significantly faster heating in response to laser pulses.
This property enables the material to reach the crystallization threshold within an extremely short
timescale.

In summary, the presented model describes the stable crystallization fraction of GST under
laser-induced thermal conditions and does not account for the kinetic aspects of the crystallization
process over time, as addressed in kinetic models such as JMAK. Nonetheless, the development
of hybrid temperature- and time-dependent models for a more comprehensive analysis of
crystallization dynamics can be considered in future studies.

Table 3 compares the synaptic and optoelectronic structures found in previous research and
shows that our proposed structure is significantly smaller. A structure with smaller dimensions
leads to occupying less space, which in turn increases the density in optical integrated circuits.
Considering the importance of increasing the density of neuromorphic synapses in optical neural
networks, our design optimally integrates these neuromorphic synapses using photonic crystals
in photonic integrated circuits. Ultimately, the use of such structures can provide innovative
solutions to our computational challenges and pave the way for further advances in the field of
neuromorphic computing. The energy consumption in Table 3 is calculated using Eq. (17) [87].

Energy = I0 × S × t (17)

where S, I0, and t are the area of the structure under laser irradiation, the power density, and the
duration of laser irradiation for weight adjustment, respectively.

To assess the fabrication tolerance of the proposed structure, a comprehensive analysis was
carried out by examining the sensitivity of its optical performance to deviations in critical
geometric parameters. Specifically, variations in the radii of the A, B, and C type holes were
analysed, and the results, depicted in Fig. S5, confirm that the optical behaviour remains stable
under moderate dimensional fluctuations.

Furthermore, the influence of changes in the GST rods radii on the transmission response is
analysed in Fig. S4, while the corresponding wavelength shift is presented in Fig. S6. To provide
a consolidated overview, Table 4 summarizes the sensitivity of key optical metrics to various
geometric deviations. These results demonstrate that the proposed structure maintains reliable
performance within standard fabrication tolerances, highlighting its suitability for implementation
in dense photonic neural networks and its compatibility with large-scale photonic integration.

6. Conclusion

In this article, we have investigated the design and implementation of all-optical synapses
using photonic crystal structure in order to increase the efficiency and reduce the dimensions of
artificial synapses. The proposed structure uses phase change materials, specifically GST-PCM,
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Table 3. Comparison of previous studies on artificial synaptic structures.

Year Device
structure

Active material Footprint [µm2] Energy
consumption

Reference

2016 Bottom gate IGZO/Al2O3 20× 40 ∼ 13 pJ [88]

2017 Two
terminals

IGZO, ISZO, ISO, IZO 180× 70 - [89]

2017 Tapered
waveguide

Ge2Sb2Te5 36× 14 ∼ 404 pJ [11]

2017 Crossing
waveguide

Ge2Sb2Te5 30× 30 - [41]

2017 Bottom gate Graphene/SWNTs 30× 90 ∼ 6 nJ [90]

2018 Micro ring
resonator

Ge2Sb2Te5 72× 55 ∼ 620 pJ [43]

2018 Two-
terminal

SiNCs 2000× 2000 ∼ 4 pJ [91]

2018 Bottom gate GZO/chitosan 80× 1000 - [92]

2019 Bottom gate IZO 30× 100 ∼ 35 nJ [93]

2019 Waveguide Ge2Sb2Te5 1530× 120 ∼ 710 pJ [20]

2019 lateral gate In2O3 80× 1600 ∼ 40 nJ [94]

2019 Micro ring
resonator

Ge2Sb2Se4Te1 590× 380 ∼ 5.5 µJ [95]

2019 Bottom gate ITO/chitosan 80× 1000 ∼ 3.9 µJ [96]

2022 Micro ring
resonator

In2Se3 25× 17 ∼ 250 pJ [97]

2023 Multi-mode
interference

Ge2Sb2Te5 115× 66 - [98]

2024 Square rod
waveguide
intersection

Ge2Sb2Te5 5.4× 5.4 - [28]

2024 Slab
triangular
waveguide
intersection

Ge2Sb2Te5 2.97× 2.57 ∼ 267 pJ This work

Table 4. Transmission and Wavelength Sensitivity to Radius Changes.

Excitation Direction Varied Element (± 5 nm) Wavelength Shift % Transmission Drift (∆T)

Port 1 to 2

A3 0.62 0.011

B3 0.28 0.003

C3 0.41 0.006

C2 0.19 0.004

GST-am 0.17 0.119

GST-cry 0.15 0.055

Port 3 to 4

A3 0.29 0.009

B3 0.41 0.125

C3 0.25 0.010

C2 0.05 0.000

GST-am 0.13 0.014

GST-cry 0.29 0.212
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to precisely tune the transmitted wavelength. The simulation results show that the slab-hole type
photonic crystal structure with lattice constant a= 0.424 µm and cavity radius 0.259a can create
a low cross-talk intersection waveguide by ignoring the two paths of the holes. The proposed
structure can transmit an optical signal through a horizontal waveguide with 96% efficiency
and -25 dB cross-talk. In addition, we calculated the FWHD and Q-factor of the proposed
structure as 4.3 nm and 353, respectively, which indicates the high efficiency of the structures in
single-mode signal transmission. By adding two GST-PCM rods to the structure, we created
a high contrast in resonant wavelength transition between the amorphous and fully crystalline
states of the PCM rods. The maximum contrast at the resonant wavelength was obtained with
an optimal GST-PCM rods radius of 61.9 nm. Laser irradiation with a power density of 100
mW/µm2 showed that the crystallization time of GST rods can vary from 0.2 to 0.9 ns, which
shows the ability to adjust the dynamics of the proposed structure. Furthermore, the findings
show that changes in the crystallinity of the GST rods can control the transmission from 1-86%.
Adjusting the time and power of the applied laser radiation changes the crystallinity of the GST
rods, which shows the high controllability of the structure. Hole-type photonic crystal structures
are generally more optimized with respect to fabrication cost and process complexity compared
to rod-type photonic crystal structures. Their distinctive geometric configuration reduces the
need for complex fabrication processes, making them highly suitable for large-scale integration
and widespread application in next-generation all-optical neuromorphic processors and optical
artificial synapses. This study showed that the use of photonic crystal structures and phase change
materials can lead to improved processing speed and reduced dimensions in optical synapse
systems, which is very critical in the design of all-optical neuromorphic systems. Photonic
crystal structures, by reducing dimensions and increasing efficiency, significantly facilitate further
research and development of advanced technologies in optical processors and optical artificial
neuromorphic systems.
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