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A B S T R A C T

In this study, we propose an all-optical neuromorphic photonic crystal synapse structure equipped with a 
Ge2Sb2Te5 phase-change material (GST-PCM). By leveraging the unique properties of the GST-PCM material, this 
structure enables the control of the synaptic weight through targeted and focused laser irradiation. 3D simula
tions employing the finite-difference time-domain (FDTD) and finite element method (FEM) demonstrated op
tical transmission exceeding 99 % and reflection below − 20 dB at a wavelength of 1504 nm within the proposed 
structure. These features, together with their compact dimensions and low power consumption, make our pro
posed structure an ideal candidate for optical processing applications and neuromorphic neural networks. 
Furthermore, we investigated the physical and thermal equations to determine the crystallization fraction of 
GST-PCM during the synapse weighting process. These equations showed excellent agreement with the simu
lation results and could accurately calculate the GST-PCM crystallization fraction as a function of time and laser 
power. Our proposed structure not only has the potential to be extended to neuromorphic systems and optical 
neural networks but also serves as an innovative platform for all-optical synapses because of its precise control of 
optical properties, high adaptability, and low power consumption.

1. Introduction

The demand for modern computing, characterized by massive 
datasets and complex algorithms, has necessitated innovative ap
proaches to information processing (Jauro et al., 2020). Inspired by the 
human brain, neuromorphic computing engineering (Burr et al., 2017) 
offers a promising solution by leveraging parallel processing, energy 
efficiency, and adaptive learning capabilities (Schuman et al., 2022). 
However, implementing these architectures using current electronic 
technologies faces challenges, such as limited bandwidth, high power 
consumption, and excessive heat generation (Tang et al., 2019; Huynh 
et al., 2022).

All-optical technologies, particularly those employing photonic 
crystal structures and phase-change materials, offer innovative solutions 
to these limitations (Nohoji et al., 2024; Laporte et al., 2018).

Due to their ability to provide ultrafast transmission and larger 
bandwidth compared to conventional electronic platforms, photonic 
technologies have gained significant attention in diverse domains such 
as high-speed data processing (Bednarkiewicz et al., 2023; Wang et al., 
2022), optical neural networks (ONNs) (Xu et al., 2021), and optical 

data storage (Hong et al., 2024). ONNs, inspired by the architecture of 
biological neural systems, leverage the advantages of optical signal 
manipulation and the intrinsic properties of photonic materials to boost 
computational efficiency (Hurtado et al., 2022; Xiang et al., 2021). 
Recently, these networks have emerged as powerful candidates for 
implementing advanced tasks such as adaptive learning, large-scale data 
handling, and memory functionalities within optoelectronic environ
ments (Zhang and Tan, 2022). At the core of such systems lie optical 
synapses (Mahata et al., 2023; Lu et al., 2023; Yang et al., 2024; Zhou 
et al., 2024), which act as the fundamental building blocks for emulating 
brain-inspired learning and memory. These nanoscale photonic units 
process optical signals analogously to biological synapses and enable 
effective communication between artificial neurons, thereby ensuring 
efficient information transfer and interaction in optical neural archi
tectures (Guo et al., 2021).

Photonic crystal structures are powerful tools for designing high- 
performance and compact optical systems owing to their unique abil
ity to control light at the nanoscale. These structures enable precise 
guidance of light waves by creating photonic gaps and provide a suitable 
platform for designing optical synaptic architectures (Yadav et al., 
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2021).
The realization of efficient optical synapses critically depends on the 

choice of materials whose optical parameters can be accurately manip
ulated (Fu et al., 2024). Among the various candidates, phase-change 
materials (PCMs) (Wang et al., 2023) have attracted significant atten
tion, with Germanium-Antimony-Telluride (GST) (Wang et al., 2024) 
being one of the most widely investigated options. GST-based PCMs 
exhibit remarkable features such as rapid and reversible phase transi
tions, excellent thermal stability, and the capacity to encode multiple 
states, which makes them highly suitable for applications in optical 
memories (Lu and Yan, 2024), integrated photonic circuits, and, most 
importantly, optical synapses (Li et al., 2024; Zhang et al., 2024).

Using phase-change materials, such as Ge2Sb2Te5 (Gerislioglu et al., 
2020), in the architecture of all-optical structures is considered an 
essential step towards realizing flexible information processing and 
storage (Tao et al., 2024; Alkhamisi et al., 2022). These materials can 
undergo reversible phase transitions between amorphous and crystalline 
states with distinct optical properties that enable precise control of 

synaptic weights (Guo et al., 2019; Wu et al., 2022; Qu et al., 2018).
Leveraging its non-volatile nature, GST has recently enabled the 

implementation of multiple photonic structures, including neuro
morphic synapses (Zhuge et al., 2019; Xu et al., 2020), memory ele
ments (Pernice and Bhaskaran, 2012) (Ríos et al., 2015), and optical 
switches (Rodriguez-Hernandez et al., 2017) (Stegmaier et al., 2017). 
These functionalities have been successfully integrated into devices such 
as Mach-Zehnder interferometers (Dhingra et al., 2019), ring resonators 
(Zheng et al., 2018), and photonic crystal (PhC) cavities (Ma et al., 
2016).

Using laser radiation, it is possible to create stable changes in syn
aptic weights, which are the basis of the learning and memory processes 
in optical neural networks.

An important factor governing the performance of GST-based syn
apses in optical neural networks is the speed of this amorphous-to- 
crystalline switching. The dynamics of the transition have been widely 
reported: for instance, a switching time of ~32 ns is demonstrated in 
(Kiselev et al., 2022), whereas a much faster transition of ~10 ns is 
achieved in (Kunkel et al., 2022). These results confirm that GST pos
sesses sufficient speed to be employed in ultrafast photonic devices. 
Nonetheless, despite these advantages, challenges remain regarding 
device longevity, as repeated cycling between the two phases can lead to 
gradual degradation, raising concerns about long-term reliability of GST 
in optical synaptic platforms.

All-optical neuromorphic synapses (Zhang et al., 2024; Prakash 
et al., 2022) offer an efficient solution for parallel and scalable pro
cessing in optical neural networks (Song et al., 2021; Feldmann et al., 
2019). In these systems, light not only acts as an information-carrying 
signal but also as the main factor for adjusting synaptic weights, 
allowing for the design of more compact, faster, and more efficient 
circuits (Zhang et al., 2020; Tan et al., 2018). By mimicking biological 
synapses, these photonic counterparts are capable of performing com
plex computations with remarkable speed and precision, thereby 
significantly improving the performance of artificial intelligence sys
tems and deep learning models (Huo et al., 2025; Luo et al., 2023).

Recently, several photonic synapse architectures based on phase- 
change materials have been proposed and actively investigated. For 
example, in (Nohoji et al., 2025), a photonic crystal waveguide inter
section employing GST has been demonstrated as a neuromorphic syn
apse with a compact footprint of 29.16 μm2; however, this design 
requires identical input wavelengths and weighting procedures across 

Fig. 1. Schematic of an artificial neuron with all-optical, tunable synapses. The 
neuron collects weighted input signals and processes them through an activa
tion function to produce an output. The error block computes weight update 
signals to adjust the synaptic weights dynamically.

Fig. 2. The architecture of an artificial neuron using all-optical synapses.
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all synapses. In (Nohoji et al., 2025), a Mach-Zehnder interferometer 
integrating directional couplers with GSST has been reported, occupying 
an area of 195 μm2, where the weighting operation relies on injecting in- 
phase and equal-amplitude signals into both couplers. Moreover, in 

(Nohoji et al., 2025), a slab-type photonic crystal with a triangular lat
tice of air holes has been investigated, exhibiting an energy consumption 
of 267 pJ per synaptic weighting operation.

In this study, we propose an all-optical photonic crystal synaptic 

Fig. 3. (a) Band structure of the proposed photonic crystal waveguide in normalized frequency. (b) Transmission and reflection in dB.

Fig. 4. (a) 2D view of the proposed all-optical synapse utilizing a photonic crystal with embedded PCM. (b, c) The proposed all-optical photonic crystal synapse. Blue 
arrows represent the input and output optical paths, and red arrows depict the weighting signal path used to adjust synaptic weights. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.)
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structure based on GST-PCM for implementation in optical processing 
systems and neural networks. By exploiting the photonic band gaps in 
photonic crystals and integrating them with GST materials, our pro
posed structure enables the precise control of light emission and dy
namic tuning of synaptic weights. In this structure, the synaptic weight 
is controlled only by precisely engineered laser radiation, which facili
tates learning and memory processes.

Comprehensive 3D simulations show that the proposed structure is 
highly accurate and fully respects basic physical principles. In addition, 
the use of photonic crystal structures allows the design to be optimized 
with a significant reduction in size and power consumption compared to 
conventional models.

Our findings demonstrate that the proposed all-optical neuro
morphic synapse design offers substantial reductions in power con
sumption, enabling more compact system footprints, and enhancing the 
scalability of neuromorphic neural network architectures. This 

development represents a significant milestone in the advancement of 
information processing systems, paving the way for the realization of 
efficient small-scale implementations of all-optical neuromorphic 
systems.

2. An artificial neuron structure

Fig. 1 shows the block diagram structure of an artificial neuron. In 
this structure, input signals pass through channels x1 to xn, and the 
corresponding synapses adjust the weight of the input signal. The sum 
block then aggregates the weighted inputs and applies the resulting 
output to an activation function (Karlik and Olgac, 2011). This nonlinear 
mathematical function that plays a vital role in enabling the complex 
and nonlinear behaviors of neural networks (Ramchoun et al., 2016; Du 
et al., 2022). This function is usually defined as a sigmoid or ReLU 
function (Waoo and Soni, 2021; Dubey et al., 2022), so that if the sum of 
the weighted inputs exceeds a certain threshold, the neuron produces an 
output signal.

The neuron uses learning algorithms such as error backpropagation 
(Henseler, 2005) or delta law (Chakraverty et al., 2019; Auer et al., 
2008) to optimize the network performance and minimize errors. These 
algorithms work on the principle of error reduction. In this process, the 
neuron compares the obtained output with a reference or target value in 
the error block and, based on the calculated error, sends corrective 
signals to the synapses to adjust the synaptic weights. This process 
gradually reduces the output error with each iteration, leading to 
training of the neural network. In this way, the network gradually learns 
and can generalize to new inputs.

The detailed steps this algorithm are formulated based on the neural 
network learning flow, which outlines the interconnections among 
system components and describes how the network gradually minimizes 
its error through iterative weight adaptation.

Neural network learning flow:
Input Initialization: The process begins by providing the neuron with 

an input vector {xi}. Each element of the vector represents a synaptic 
input signal.

Weighted Summation: The input signals are multiplied by their 
corresponding synaptic weights w(k)

i , where k denotes the current 
training epoch. The neuron’s internal potential is obtained as: 

S =
∑n

i=1
xiw(k)

i (1) 

Activation: The summation result is processed through a nonlinear 
activation function f(⋅), yielding the neuron output at epoch k: 

O(k) = f(S) (2) 

Error Computation: The deviation between the actual neuron output 
and the desired (target) output P is quantified using the mean-squared 
error criterion: 

Er =
1
2
(O(k) − P)2 (3) 

Convergence Check: If the error Er falls below a predefined tolerance, 
the training process is terminated. Otherwise, weight adaptation is 
performed.

Gradient Evaluation: The gradient of the error function with respect 
to each synaptic weight is computed according to the delta rule: 

Δw(k)
i =

∂E
∂w(k)

i

(4) 

Weight Update: Synaptic weights are updated via the gradient- 
descent learning rule, incorporating the learning rate α: 

w(k+1)
i = w(k)

i − αΔw(k)
i (5) 

Iteration: The epoch index is incremented (k → k + 1), and the 

Fig. 5. (a) Comparison of transmission using FDTD, FEM simulations, and 
CMT. All three methods show good agreement. (b) Comparison of transmission 
for rod radius rs in the range of 90 and 130 nm.
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Fig. 6. (a) Crystalline-Amorphous Phase Transition in GST-PCM. By applying long-duration, low-amplitude laser pulses, the temperature of GST-PCM can be 
controlled in a range between the crystallization temperature (Tc) and the melting point (Tm). (b) The real and imaginary parts of the refractive index of GST-PCM in 
fully amorphous and crystalline states at different wavelengths.

Fig. 7. Dependence of output transmission on GST-PCM dimensions (thickness and radius), (a) in the amorphous phase, (b) in the fully crystalline phase, (c) in terms 
of the figure of merit, (d) Contour plot of FOM. The thickness and radius of GST-PCM are chosen to be 200 nm and 75 nm, respectively.
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procedure is repeated until the convergence criterion is satisfied.
Fig. 2 shows the structure of a neuron with all-optical synapses 

designed to implement neuromorphic neural network processing. In this 
structure, a continuous wave (CW-laser) laser generates inputs at 
different wavelengths and transmits them (via the blue path) to the 
multiplexer block (DMUX). The DMUX block is responsible for sepa
rating and adjusting the polarization, and sending each incoming 
wavelength to the all-optical synapse. Synapses give weight to the 
incoming wavelengths.

After the weighting process, a multiplexer (MUX) block combines the 
weighted input wavelengths. It feeds them an optical-to-electrical (O/E) 
module to convert them into electrical signals (via the black path). The 
(O/E) module feeds the resulting electrical signals into a nonlinear 
activation function block. This block analyzes signals and determines 
the final output of the neuron.

Subsequently, an error evaluation block compares the obtained 
output with the target value and calculates the synaptic correction co
efficients. Subsequently, an electro-pulse generator generates synapse 
weight correction pulses. An electro-optic modulator (EOM) converts 
these pulses into optical signals and sends them through red paths to the 

DMUX block to be applied to the corresponding optical synapses after 
polarization adjustment.

3. All-optical proposed synapse structure

The proposed synaptic structure utilizes silicon rods embedded in a 
square photonic crystal lattice on a SiO2 substrate. The lattice constant 
of this structure was set to a = 0.55 μm. The rods were designed with a 
height of 1.1a, and the SiO2 thickness was set at 1.5a, carefully selected 
to optimize light confinement and minimize optical losses.

Fig. 3(a) shows the band structure of the proposed photonic crystal 
waveguide. The band gap of this waveguide lies within the normalized 
frequency range of 0.33 to 0.46. This transmission range validates the 
suitability of the structure for various photonic applications.

To create a high-transmission waveguide, one row of rods was 
removed from the structure, and the radii of the five central rods were 
precisely adjusted and optimized. The central cavity rod is set to rc =

0.29a, while the radius of the surrounding rods was adjusted between 90 
and 130 nm. This precise adjustment allows for accurate control of the 
transmitted wavelength and optimizes the overall optical performance 
of the structure.

Two scattering rods (rs) were placed at the waveguide path to 
enhance the quality factor (Q-factor) (Nohoji and Danaie, 2022). These 
rods improve the overall performance by minimizing reflection losses 
and maximizing light confinement.

Optical response of the proposed photonic crystal structure in terms 
of reflection and transmission spectra is presented in Fig. 3(b). The re
sults, obtained under TM polarization, indicate a reflection level below 
–20 dB at the operational wavelength of 1504 nm, confirming the effi
cient light propagation through the structure.

One of the distinctive characteristics of the proposed structure is its 
capability to dynamically control the intensity of transmitted light by 
exploiting the thermo-optic properties of a PCM situated at the core of 
the central cavity rod. By applying a vertical laser to the central rod (rc), 
the rod acted as an optical fiber, guiding light into the embedded PCM. 
The incident light increases the temperature of the PCM, resulting in a 
change in its refractive index. This refractive-index modulation enables 
precise control of the light transmission characteristics within the 
waveguide.

Fig. 4 shows the proposed structure, which is specifically designed to 
function as an all-optical synapse in neuromorphic neural networks. The 
ability to precisely adjust rod radii enables fast response times and 
seamless integration with other optical components, making it a prom
ising candidate for advancing the fields of optical computing and neu
romorphic artificial intelligence.

Fig. 5(a) shows the structure transition without a PCM. The results 
show that the structure has a transmission of 99 % at a wavelength of 
1504 nm. This characteristic demonstrates the optimized performance 
of the structure at the designated wavelength and its effectiveness in 
mitigating reflection losses. Moreover, the cavity structure exhibits a 
narrow full width at half maximum (FWHM) of 7.7 nm and a Q-factor of 
195 at the transmission wavelength. To validate the simulation results, 
the proposed structure we investigated using three methods: FDTD, 
FEM, and coupled-mode theory (CEM).

The cavity resonances can be effectively modeled using coupled 
mode theory by analyzing the interaction between the waveguides and 
the cavity. The transfer function associated with the input and output of 
waveguides connected to the cavity is expressed as a function of the 
cavity Q-factor, which is related to the intrinsic loss of the cavity and the 
coupling strength between the waveguide and cavity (Asgari and Fab
ritius, 2020). The transfer function is defined in Eq. (6) (Akahane et al., 
2005; Li et al., 2010): 

tf =
1

Qw
1
Qi
+ 1

Qw
+

2j
λn

(6) 

Fig. 8. (a) Transmission comparison between amorphous and fully crystalline 
GST-PCM states, (b) transmission variation for crystallization fractions ranging 
from 10 % to 90 %.
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Fig. 9. Electric field profiles of the proposed structure using GST-PCM in (a) amorphous and (b) fully crystalline phases. The amorphous phase exhibits minimal 
optical absorption and maximum transmission, while the crystalline phase shows increased absorption and reduced transmission.

Fig. 10. (a) Spectral distribution of electromagnetic power loss density (Qe) in GST-PCM under 100 mW/μm2 laser irradiation through the central cavity rod (rc). 
Maximum Qe occurs at 1.05 µm for amorphous and 1.12 µm for crystalline phases. (b, c) Electric field profile in the cavity structure without the GST-PCM under laser 
irradiation from the central rod.
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and λn is defined as Eq. (7). 

λn =
λ

λ0 − λ
(7) 

where λ0 is the cavity resonance wavelength.
The quality factors associated with the cavity and coupling are 

related to the intrinsic cavity loss (τi) and coupling loss to the waveguide 
(τw), respectively, and are detailed in Eq. (8) and Eq. (9). 

Qi =
πCτi

λ0
(8) 

Qw =
πCτw

λ0
(9) 

Where C is the speed of light.
Furthermore, Eq. (10) determines the transmission (Tr) through the 

cavity waveguide structure (Li et al., 2010). 

Tr = |tf |2 (10) 

For the proposed structure, we obtained the values of Qi and Qw values of 
27,382 and 138, respectively.

Fig. 5(a) presents a comparative analysis of the results obtained from 
the three simulation methods, revealing a high degree of consistency. 
The observed 8 % deviation in the transfer parameter was due to the 
difference in the distinct meshing strategies employed in the two 

simulation methods. This discrepancy is mainly due to changes in the 
geometric precision and discretization of the computational domain. 
The strong correlation between the results of the three methods (FEM, 
FDTD, and CMT) proves the accuracy of the simulations. It emphasizes 
the robustness of the proposed structure for practical applications.

For the FDTD simulations, perfectly matched layer (PML) boundary 
conditions were applied to all boundaries to minimize reflections. A grid 
resolution of 10 nm was used to accurately capture variations in the 
electromagnetic field. Convergence was ensured using the Auto Shutoff 
feature, such that the total field energy decayed to less than 10− 5 of its 
initial value.

As shown in Fig. 5(b), a tunable transmission spectrum can be real
ized by systematically varying the radius of the scattering rods (rs) in the 
range 90–130 nm. This capability enables precise tuning of the trans
mission wavelength for each synapse, thereby providing a mechanism to 
optimize the neuromorphic synaptic performance tailored to specific 
optical system requirements.

3.1. Ge2Sb2Te5 phase-change material

Phase-change materials have gained attention in recent years as 
applied elements in optical and optoelectronic technologies. These 
materials possess unique properties that make them ideal for applica
tions in phase-change memory and programmable optical systems. 
Germanium-antimony-telluride (GST), one of the best-known PCMs, 
exhibits remarkable optical and electromagnetic properties owing to its 
ability to reversibly switch between amorphous and crystalline phases. 
This material has numerous applications, including optical data pro
cessing, data storage, and all-optical neuromorphic systems.

All-optical neuromorphic systems use GST-PCM as the basic material 
to simulate biological synaptic functions (Pernice and Bhaskaran, 2012; 
Chakraborty et al., 2019; Chakraborty et al., 2018; Brückerhoff-Plück
elmann et al., 2021). By leveraging the unique properties of GST-PCM, 
synaptic attributes such as weight modifications can be precisely and 
rapidly controlled through optical means. This capability promises sig
nificant advances in optical data processing for neuromorphic neural 
networks.

The phase transitions in GST-PCM, commonly instigated by thermal 
or optical stimuli (Bakan et al., 2016), can modulate the optical prop
erties of the material, thereby affording precise control over the light 
transmission characteristics, including the refractive index, absorption, 
and reflection in different phases. This capability enables complex op
tical processing at the micro-scale and high speeds. As a result, GST-PCM 
is extensively employed to design optical synapses and neuromorphic 
systems, especially in applications demanding optical data processing 
and storage. Furthermore, the exploitation of GST-PCM in optical sys
tems, including tunable filters (Julian et al., 2020; Gnawali et al., 2024), 
sensors (Zou et al., 2019; Mondal, 2008), switches (Elliott, 2015; Cao 
et al., 2020), and optical processors (Kumar and Sharma, 2020; Du, 
2022), has facilitated significant advances in various optical 
technologies.

The crystallization fraction of GST-PCM (η) was modulated by 
increasing the temperature through a thermal or optical source, as 
shown in Eq. (11) (Nohoji et al., 2024; Rashidi et al., 2021; Rashidi et al., 
2023). These temperature fluctuations induce substantial alterations in 
the optical properties of GST-PCM, notably its refractive index 
(Feldmann et al., 2019). The refractive-index changes caused by the 
GST-PCM phase transition have significant advantages for applications 
in optical neuromorphic systems, including learning processes and 
synaptic weight tuning. According to the Lorentz-Lorenz equation 
(Rashidi et al., 2021; Pourmand and Choudhury, 2022) (Eq. (12)), the 
refractive index of the PCM exhibits a nonlinear dependence on the 
variation in the crystal fraction. This nonlinear behavior has a signifi
cant impact on the light transmission in PCM-based systems and plays an 
important role in controlling and optimizing the performance of these 
systems. 

Fig. 11. Distribution of power loss density Qe in GST-PCM under 100mW/μm2 

laser irradiation for (a) amorphous phase and (b) fully crystalline phase. In the 
crystalline phase, the Qe is predominantly absorbed at the surface of the 
GST-PCM.
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η(T) = e(
T◦kelvin − 615

30 )

1 + e(
T◦kelvin − 615

30 )

(11) 

εeff − GST(η) =
εam

(
εcry + 2

)
+ 2η(εcry − εam)

εcry + 2 − η(εcry − εam)
(12) 

where εcry and εam are crystallization and amorphous permittivity of 
GST-PCM, respectively.

Using a light pulse of appropriate power and duration allowed 
modulation of the GST-PCM crystallization fraction in the range of 0 to 
1. This facilitates the gradual transition of the material between the 
amorphous and crystalline phases. This capability is important for pro
grammable optical systems and optical neuromorphic synapses.

Furthermore, applying high-power, short-duration light pulses 
enabled the rapid quenching of GST-PCM from the crystalline to the 
amorphous state. These features, along with their high compatibility, 
make GST-PCM an exceptional choice for use in optical memory systems 
and dynamic synaptic weight tuning. These capabilities are essential for 
the learning and adaptation of optical neural networks (Fig. 6(a)).

Fig. 6(b) shows the dependence of the changes in the real and 
imaginary components of the refractive index of GST-PCM (Feldmann 
et al., 2019). These changes are not only critical for optical systems and 
switches, but also serve as a key tool in the design of neuromorphic 
synapses at the micro- and nanoscale. These features allow for more 
precise engineering of the optical and dynamic properties of these 
structures, helping to facilitate advanced applications in new optical 
technologies.

3.2. Synapse structure utilize GST-PCM

As shown in Fig. 4, the GST-PCM element was strategically 

incorporated into the central cavity rod. To systematically assess the 
influence of rod dimensions on structural performance, the radius and 
height of the GST-PCM element were parametrically varied. Fig. 7(a, b) 
show that the amorphous phase provides maximum transmission and 
the crystalline phase provides minimum transmission through the 
structure. To quantitatively assess the influence of the central rod ge
ometry, we defined the figure of merit (FOM) according to Eq. (13). The 
calculated FOM values for the different radius and thickness combina
tions are shown in Fig. 7(c). As shown in Fig. 7(d), the FOM exhibited a 
positive correlation with the rod thickness. However, this increase is 
accompanied by a concomitant increase in the input power required to 
facilitate the phase transition from the amorphous to crystalline state, 
which is undesirable because of practical limitations and energy effi
ciency considerations. Therefore, an FOM of 66 % was selected, corre
sponding to a GST-PCM rod radius of 75 nm and thickness of 200 nm, to 
optimize device performance while balancing power efficiency and 
optical performance. 

FOM =
Tram − Trcry

Tram + Trcry
(13) 

Trcry and Tram represent the crystalline and amorphous state transitions 
of the GST-PCM, respectively.

Fig. 8(a) shows the contrasting transmission characteristics of the 
structure in the amorphous and crystalline phase states of the GST-PCM. 
The amorphous phase exhibited a significantly higher transmission than 
the crystalline phase. Fig. 8(b) depicts the output transmission as a 
function of the crystallization ratio (in dB). The plot clearly illustrates 
the gradual modulation of the transmission characteristics in response to 
incremental changes in the crystallization ratio, thus confirming the 
tunability and precise control of the optical properties of the system.

In addition to the changes in the imaginary part of the refractive 

Fig. 12. Electric field profiles in the GST-PCM for (a,) the amorphous phase and (b) the fully crystalline phase.
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index (related to signal absorption), the phase transition of GST-PCM 
from the amorphous to crystalline state also leads to an increase in the 
real part of the refractive index. As the real part of the refractive index of 
GST-PCM increases, the transmission peak shifts to longer wavelengths. 
Consequently, considering a fixed incident laser wavelength at the 
amorphous state peak of GST, the transmission can be tuned over a wide 
range from 93 % to 5 %. This high degree of tunability makes the pro
posed GST-based structure ideal for implementation as a fully optical 
synapse with precise controllability in neuromorphic circuits.

Fig. 9 shows the electric field profiles within the structure of the 
amorphous and crystalline phase states of GST. These profiles demon
strate significant differences in how light interacts with GST material in 
each phase state.

4. Weighting mechanism

In this study, we used an innovative fiber-optic-inspired technique to 
precisely tune the crystalline fraction of GST-PCM embedded in the 
central rod (rc). A vertical pulse was launched into the structure and was 
guided along the central rod. By adjusting the power and duration of the 
pulse applied to GST-PCM, the crystallization fraction could be precisely 
adjusted.

To determine the optimal wavelength for adjusting the crystalliza
tion fraction, we evaluated the Qe parameter of the GST. Fig. 10(a) il
lustrates the variation in Qe for both the crystalline and amorphous 
phases of the GST-PCM. The results revealed that the optimal wave
length for effectively modulating the crystallization ratio in the amor
phous phase is 1.05 μm, where Qe reaches its maximum value.

Fig. 10(b) and (c) show the electric field distribution profiles of the 
proposed structure without GST-PCM under excitation with a 1.05 μm 
wavelength laser emitted from the central rod (rc). These profiles 
accurately demonstrate the impact of an external laser wave on the 
optical fields and the structural and transmission properties of the 
system.

Fig. 11 shows the distribution of the electromagnetic power loss 
density at a wavelength of 1.05 μm in the amorphous and crystalline 
phases of the GST-PCM. Furthermore, the electric field profiles within 
the structure for both the amorphous and fully crystalline phases under 
the excitation of the weighting wavelength (1.05 μm) are illustrated in 
Fig. 12.

Fig. 13(a) illustrates the time-dependent evolution of the GST-PCM 
crystallization fraction under different initial crystallization conditions 
when exposed to an irradiation intensity of 100 mW/μm2 from the 
central rod. The results demonstrate that the time required for the 
complete crystallization of GST-PCM remains nearly constant, irre
spective of the initial crystallization state (the distance between the two 
white dashed lines). These results indicate that the duration of the input 
laser irradiation for the complete crystallization of GST-PCM is mainly 
independent of the initial conditions of the GST-PCM crystallization 
fraction, which facilitates the calculation of pulse duration settings and 
the optimization of learning processes in optical neuromorphic systems. 
However, the time required to apply a laser pulse to GST-PCM to reach 
the critical temperature and initiate crystallization varies with the initial 
crystallization fraction, and these changes must be carefully considered 
in the design and precise control of neuromorphic synapse processes.

Fig. 13(b) depicts the time required to determine the crystallization 
ratio of the GST material when irradiated with a 100 mW/μm2 pulse 
through the central rod for weighting GST-PCM. The crystallization time 
was derived using an interpolation method based on Eqs. (14–16). This 
allowed for precise adjustment of the 100 mW/μm2 laser irradiation 
time to achieve the desired crystallization ratio in the GST material. This 
approach offers a practical method for controlling the crystallization 
process and tailoring the optical properties of the device. 

Time[ps] =
0.1Y

Iin [W/μm2]
(14) 

and 

Y = A+Bη0 +CT+Dη0
2 + ETη0 + Fη0

3 +GTη0
2 (15) 

and 

T = 30ln
( η

1 − η

)
+615 (16) 

where η0 is the initial crystallization fraction, and the coefficients A, B, 
C, D, E, F and G are − 167.7, − 16.5, 0.6094, 394.1, − 0.6131, − 389.6 and 
0.5066, respectively.

As a result, the processing unit responsible for setting the weight in 
each neuron can calculate the laser pulse length using Eq. (14), and 
subsequently send a laser pulse of a specified duration to the GST-PCM 

Fig. 13. (a) Effect of 100 mW/μm2 laser pulse duration on the crystallization 
fraction of the GST-PCM. The graph shows the variation in the crystallization 
fraction of the GST-PCM as a function of laser pulse duration and the initial 
crystallization fraction. The region between the two white dashed lines repre
sents the range of crystallization fraction changes from 0 % (amorphous phase) 
to 100 % (fully crystalline phase). (b) Required 100 mW/μm2 laser pulse 
duration for complete GST-PCM crystallization as a function of the initial 
crystallization fraction.
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in the proposed synapse structure. This technique not only optimizes the 
performance of neuromorphic systems but also increases the accuracy 
and efficiency of adjusting the transmission speed and weight in all- 
optical neuromorphic systems.

5. Results and proof

5.1. Multi-synapse integration and thermal crosstalk analysis

The proposed photonic crystal synapse has been meticulously 

engineered to facilitate the integration of multiple synapses while 
minimizing electromagnetic field interference. Numerical simulations of 
the electric and magnetic field distributions at a wavelength of 1504 nm 
demonstrate that the field intensities at the structure edges, located 
approximately 4a from the central waveguide, are effectively negligible 
(Fig. 14). This characteristic guarantees that each synapse operates 
independently, without performance perturbation from adjacent 
synapses.

To evaluate the effect of thermal crosstalk during the PCM phase- 
change process, the thermal conductivities of the employed materi
als—including silicon, silicon dioxide, GST, and air—were carefully 
considered. Amorphous GST exhibits a thermal conductivity of 0.2–0.3 
W/m⋅K, which increases to 0.4–0.6 W/m⋅K in the crystalline phase (Ríos 
et al., 2015; Le Gallo et al., 2016). In comparison, crystalline silicon has 
a much higher thermal conductivity of 148 W/m⋅K (Yamasue et al., 
2002), while SiO2 (1.4 W/m⋅K (Zhu et al., 2018) and air (0.026–0.076 
W/m⋅K (Rodrigues et al., 2021) act as effective thermal insulators. These 
differences confine the heating region primarily within the GST element 
and the silicon cavity rod, thereby minimizing heat leakage to adjacent 
rods and neighboring synapses.

For clarity, Table 1 summarizes the optical and thermal parameters 
of all materials employed. This analysis demonstrates that, even under 
multi-synapse integration, neighboring synapses operate with minimal 
thermal interference and can be regarded as nearly independent units, 
ensuring the scalability of the proposed architecture.

Moreover, by carefully controlling the amplitude and duration of the 
optical excitation pulses, the phase-change process can be precisely 
regulated, preventing unintentional crystallization in nearby synapses. 
This behavior confirms that the proposed device is inherently robust 
against thermal crosstalk and well-suited for reliable multi-synapse 
integration.

Leveraging this design, scalable multi-synapse integration is 
achievable, as depicted in Fig. 15. Each synapse maintains autonomous 
operation, representing a clear advancement over previous architec
tures. This capability reinforces the potential of the proposed photonic 
crystal synaptic platform for deployment in complex optical neural 
networks, enabling system-level integration while preserving precise 
control over synaptic weight modulation and dynamic response.

5.2. Reliability and durability of GST-PCM in neuromorphic synapses

The proposed GST-PCM-based neuromorphic photonic synapse 
demonstrates high reliability and durability due to the careful design of 

Fig. 14. (a) Electric field profile and, (b) magnetic field profile of all-optical proposed synapse structure at 1504 nm wavelength.

Table 1 
Material parameters.

Material n k ρ [kg/m3] k [w/m.k] Cp 

[J/K. 
kg]

Silicon (
Yamasue 
et al., 2002; 
Aspnes and 
Studna, 
1983; 
Laprais 
et al., 2024)

3.5 0 2330 148 711

Air (Rodrigues 
et al., 2021)

1 0 350–1225 0.026–0.076 1100

Silicon dioxide 
(Zhu et al., 
2018; 
Laprais 
et al., 2024; 
Malitson, 
1965)

1.47 0 2203 1.4 709

GST-am (
Feldmann 
et al., 2019; 
Chakraborty 
et al., 2018; 
Zhu et al., 
2018)

(Feldmann 
et al., 
2019)

(Feldmann 
et al., 
2019)

5870 0.19 217

GST-cry (
Feldmann 
et al., 2019; 
Chakraborty 
et al., 2018; 
Zhu et al., 
2018)

6.39 1.26 6270 0.59 217
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the phase-change material operation. In this structure, the GST-PCM 
element undergoes gradual modulation of its crystallization fraction 
rather than abrupt binary transitions between amorphous and crystal
line states. This approach significantly reduces thermal stress and ma
terial fatigue, enhancing the endurance of the device.

Experimental studies on Ge2Sb2Te5 have shown endurance typically 
ranging from 105 to 108 switching cycles, depending on the device 
configuration, pulse energy profile, and thermal management strategies, 
with optimized designs achieving up to 108 cycles (Wang et al., 2024; 
Ríos et al., 2015; Martin-Monier et al., 2022; Wang et al., 2020; Kim 
et al., 2019; Burr et al., 2008). In the proposed synapse, low-energy 
optical pulses with carefully controlled duration and amplitude enable 
precise tuning of crystallinity while minimizing unwanted thermal 
accumulation.

Furthermore, the GST-PCM element is thermally confined within a 
silicon rod and an air substrate with low thermal conductivity. This 
confinement localizes heat and prevents thermal diffusion to adjacent 
regions, ensuring that the applied energy efficiently drives the phase 
transition with minimal thermal leakage.

These design strategies collectively provide enhanced long-term 
reliability and stability of the proposed optical synapse under repeated 
operation, making the structure suitable for robust implementation in 
optical neuromorphic computing systems.

5.3. Parametric analysis of structural variations

A comprehensive parametric study was conducted to examine the 
effects of variations in the central rod radius (rc), scattering rods radii 
(rs), and lattice constant on the optical performance of the proposed 
photonic crystal synapse. The results, shown in Fig. 16, provide a 
detailed understanding of the sensitivity of synaptic transmission to 
structural parameters and demonstrate the robustness of the device 
under practical fabrication tolerances.

Eqs. (17–26) present the theoretical relationships and governing 
physical and thermal equations that describe the evolution of the GST- 
PCM temperature as a function of time and the applied laser power 
(Lizama et al., 2022; Saemathong et al., 2023; Bounouar et al., 2016; 

Balanis, 2012; Consoli et al., 2020; Savini and Turowski, 2012). These 
equations, based on the physical principles and thermal properties of 
GST-PCM, provide a comprehensive model of the crystallization process 
and enable analysis of the effect of varying irradiation conditions on the 
optical properties and crystallization ratio of GST-PCM. A comparison of 
the simulated results with the theoretical predictions obtained from 
these equations validated the accuracy and reliability of the numerical 
simulations. 

ρcp
∂T
∂t

+ ρcpU.∇T = ∇.(K∇T)+Qe; Heat − Transfer Equation (17) 

where ρ, cp and K represent the density, specific heat capacity, and 
thermal conductivity of the GST-PCM, respectively. 

Qe =
1
2

Re(J.E*) (18) 

J = σE (19) 

σ = wε0ε2 (20) 

ε2 = 2nk (21) 

where n and k represent the real and imaginary parts of the GST-PCM 
refractive index, respectively. 

Ez GST =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Iz GST

Cε0n

√

(22) 

where ε0 is the permittivity of free space.
Iz GST = (1 − RGST)Iz Sie− αGSTZGST Beer − Lambert Law; (23) 

Iz Si = (1 − RSi)I0e− αSiZSi Beer − Lambert Law; (24) 

R and α denote the reflection and absorption coefficients, respectively. 

I0 =
P0

S
(25) 

Fig. 15. Multi-synapse integration.
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where S denotes the area of the synaptic structure, and P0 denotes the 
laser power. 

α =
4πk

λ
(26) 

Fig. 17 illustrates the final crystallization ratio as a function of various 
weighting pulse powers (50, 100, and 200 mW/µm2) through FEM 
simulations and theoretical calculations (Eqs. (14–16)). The close 
alignment between the numerical simulation results and the theoretical 
models based on the discussed physical and thermal principles confirms 
the validity of the numerical simulation methods used in this study. As 
shown in the figure, the laser power applied to the proposed structure 
had an inverse relationship with the required crystallization time, 
indicating that increasing the laser power accelerated the crystallization 
process.

Reducing the energy consumption in the training process and 
adjusting the weight of neuromorphic synapses play a fundamental role 
in improving the efficiency, scalability, and operationalization of neu
romorphic systems. In this study, we investigated the energy consump
tion of a single neuron consisting of the four proposed synapses. For this 
purpose, we used the gradient descent algorithm (Xie et al., 2023; 
Ruder, 2016) to adjust synaptic weights. This algorithm is optimal for 
neuromorphic models because of its efficient convergence and compu
tational simplicity. Furthermore, the neuron activation function is 
defined as a sigmoid function ( fz = 1/(1+exp( − z) ) ), providing a high 

Fig. 16. Effect of variations in the (a) scattering rod radii (rs), (b) central rod radius (rc), and (c) lattice constant on the optical transmission of the proposed photonic 
crystal synapse.

Fig. 17. GST-PCM crystallization fraction vs. laser pulse duration for different 
power densities of 50, 100, and 200 mW/μm2. The results were obtained from 
numerical simulations using the finite element method. The dashed gray lines 
represent the theoretical calculations based on heat transfer equations. The 
good agreement between the simulation and theoretical results indicates the 
validity of the simulation model.
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degree of flexibility in the learning process owing to its nonlinear 
characteristics. The energy consumption in each epoch was calculated 
using Eq. (27) (Wang et al., 2021): 

dE = I0 × S × dt (27) 

where dE is the energy consumption and S, I0, and dt are the area of the 

Fig. 18. Energy consumption and training error reduction in the weighting algorithm of an artificial neuron with four synapses using the gradient descent method for 
input patterns (a) [1_0.7_0.3_0.9], and (b) [0.5_1_0.7_0.2]. Red and green numbers in the patterns represent the target output and the trained neuron output, 
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2 
Comparison of optoelectronic and artificial synaptic devices based on previous research.

Ref. Structure Active materials Dimension 
[μm2]

Wavelength [nm] Q-factor Energy consumption years

Li et al. (2016) Bottom gate IGZO/Al2O3 20 × 40 365 _ 13 pJ 2016
Cheng et al. (2017) Tapered waveguide Ge2Sb2Te5 36 × 14 _ _ ~404 pJ 2017
Qin et al. (2017) Bottom gate Graphene/SWNTs 30 × 90 405/532 _ 6 nJ 2017
Lee et al. (2017) Two terminals IGZO, ISZO, ISO, IZO 180 × 70 380–630 _ _ 2017
Feldmann et al. (2017) Crossing waveguide Ge2Sb2Te5 30 × 30 1550 _ 10 pJ 2017
Zheng et al. (2018) Micro ring resonator Ge2Sb2Te5 72 × 55 ~1550 ~7700 ~620 pJ 2018
Wu et al. (2018) Bottom gate IGZO 10 × 100 254 _ 0.6 nJ 2018
Yang et al. (2018) Bottom gate GZO/chitosan 80 × 1000 _ _ _ 2018
Dai et al. (2018) Bottom gate C8-BTBT 200 × 6000 360 _ 42 nJ 2018
Tan et al. (2018) Two-terminal SiNCs 2000 × 2000 UV–Vis.-NIR _ 0.7 pJ 2018
John et al. (2018) Multi-gate MoS2 9 × 20 445 ~20 4.8 pJ 2018
Wang et al. (2018) Bottom gate CsPbBr3 QDs/pentacene 50 × 1000 UV–Vis. ~26 1.4 nJ 2018
Sun et al. (2018) Lateral gate IGZO/alkylated 

graphene oxide
10 × 10 405 _ 362 pJ 2018

Liu et al. (2018) Bottom gate IZO 30 × 100 470 _ ~ 35 nJ 2019
Zhang et al. (2019) Micro ring resonator Ge2Sb2Se4Te1 590 × 380 1565 ~24000 ~ 5.5 μJ 2019
Shao et al. (2019) Bottom gate SWCNT 20 × 1000 520/940/1310 _ 2.5 nJ 2019
Yin et al. (2019) Bottom gate SiNCs 10 × 120 UV–Vis.-NIR _ 0.14 nJ 2019
Feldmann et al. (2019) Waveguide Ge2Sb2Te5 1530 × 120 1553.4 ~1140 ~710 pJ 2019
Wang et al.. (2019) Bottom gate CsPbBr3 QDs 

/PQT-12
30 × 1000 500 _ 0.65 nJ 2019

Alquraishi et al. (2019) lateral gate In2O3 80 × 1600 365 _ ~ 40 nJ 2019
Wang et al. (2019) Bottom gate MoS2/PTCDA 2 × 5.3 532 _ 10 pJ 2019
Pradhan et al. (2020) graphene lattice MAPbBr3 _ 440 _ 36.75 pJ 2020
Zhang et al. (2021) Slot-ridge waveguides Ge2Sb2Te5 2 × 10.5 1550 _ _ 2021
Zhang et al. (2021) directional coupler Ge2Sb2Te5 2.8 × 15.8 1550 _ ~ 15pj 2021
Li et al. (2021) Silicon Nanowires Si NW 15 × 11 ~550 _ 1 nj 2021
Li et al. (2022) Micro ring resonator In2Se3 25 × 17 1574 4800 ~250 pJ 2022
Brückerhoff-Plückelmann et al. (2023) Multi-mode interference Ge2Sb2Te5 115 × 66 ~1550 _ 400 pJ 2023
Nohoji et al. (2024) Photonic crystal Ge2Sb2Te5 5.4 × 5.4 1310 900 _ 2024
Morcillo et al. (2024) meander-shaped VO2/Si 1.2 × 2.7 1550 _ 1 nJ 2024
Laprais et al. (2024) Thin Film Sb2s3 _ 532 _ 210 μJ 2024
Nohoji et al. (2025) RR-MZI Ge2Sb2Te5 10.5 × 20.2 1550 3226 _ 2025
Nohoji et al. (2025) DC-MZI Ge2Sb2Se4Te1 14.4 × 13.6 1320 360 _ 2025
Nohoji et al. (2025) Slab 

triangular
Ge2Sb2Te5 2.97 × 2.57 1518 353 267 pj 2025

This Work Photonic crystal Ge2Sb2Te5 4.4 × 3.3 1504 195 ~1.5 pJ _
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synapse structure for the irradiated laser, the power density, and the 
pulse duration of the irradiated laser for weight adjustment, 
respectively.

We set the laser power density to 100 mW/μm2 for tuning synaptic 
weights and trained the proposed synaptic weights, W1 to W4, using a 
supervised learning method.

The energy consumption and learning error variations for the two 
patterns are presented in Fig. 18 as functions of the number of algorithm 
iterations. The results demonstrate that the energy consumption of each 
synapse per epoch is less than 1.5 pJ, indicating the remarkable effi
ciency of the proposed structure. Furthermore, the learning process 
demonstrated effective error reduction and optimal convergence within 
a few iterations, validating the ability of the structure to handle complex 
learning tasks.

Table 2 presents a comparative analysis of optoelectronic synaptic 
devices and artificial synaptic structures. This comparison includes key 
features, such as structure, active materials, dimensions, quality-factor, 
stimulation wavelength, and energy consumption.

Table 2 provides a detailed comparison of the proposed photonic 
crystal synapse with previous optoelectronic and artificial synaptic de
vices. This comparison highlights several distinctive advantages of the 
present design, including its compact footprint (4.4 × 3.3 μm2) for 
efficient integration into photonic circuits, low energy consumption 
(~1.5 pJ per synaptic operation), and high cascadability, which enables 
the construction of larger-scale optical neural networks.

Using GST-PCM as an active material contributes to better perfor
mance of photonic crystal structures. These characteristics make our 
device a promising candidate for low-power, high-performance opto
electronic synaptic applications.

6. Fabrication method

To fabricate the proposed photonic crystal structure, silicon dioxide 
(SiO2) and silicon (Si) layers are deposited on a fused silica substrate 
with thicknesses of 1.5a and 1.1a, respectively. This process is per
formed using techniques such as chemical vapor deposition (CVD) or 
physical vapor deposition (PVD) (Fujisaki et al., 2015). Precise control 
of the thickness and uniformity of these layers is essential to achieve the 
desired dimensions in the final structure.

Next, a thin layer of photoresist, such as polymethyl methacrylate 
(PMMA), is uniformly deposited on the silicon surface. Using electron 
beam lithography (EBL), a precise pattern is designed and executed to 
create a central hole in the silicon structure with a hole diameter of 130 
nm.

After EBL patterning, plasma etching or reactive ion etching (RIE) is 
used to etch the hole. This etching process is fine-tuned to achieve a hole 
depth of 700 nm at the center of the silicon structure. Subsequently, a 
phase change material (GST-PCM) composed of germanium, selenium, 
and tellurium is locally deposited into the etched hole via atomic layer 
deposition (ALD) (Guo et al., 2019; Eom et al., 2012). Precise control of 
the thickness (200 nm) and proper placement of the GST-PCM material 
inside the hole are essential to ensure optimal optical properties of the 
photonic crystal.

After GST-PCM deposition, a silicon layer is deposited inside the 
silicon hole and on top of the GST-PCM material using plasma-enhanced 
chemical vapor deposition (PECVD). To remove residual photoresist 
(PMMA), the structure is immersed in an acetone solution at room 
temperature, rinsed with isopropanol (IPA), and then dried with nitro
gen gas. In the following step, a new pattern for photonic crystal rods is 
designed using electron beam lithography (EBL). A new thin layer of 
PMMA is applied to the silicon surface and evenly distributed via spin- 
coating. Subsequently, another etching step is performed to remove 
the unwanted silicon regions. This is achieved using reactive ion etching 
or plasma etching, utilizing gases such as sulfur hexafluoride (SF6) or 
chlorine (Cl2), which are specifically designed for silicon etching. The 
etching process is carefully controlled to ensure that only the predefined 

regions are etched away, leaving silicon rods with the desired di
mensions. Finally, a photonic crystal structure with desired properties is 
formed.

7. Conclusion

In this study, an all-optical neuromorphic synaptic structure based 
on photonic crystals, equipped with GST-PCM, was designed and 
analyzed. Simulation results using accurate FDTD and FEM methods 
demonstrated that the proposed structure can achieve a transmission 
efficiency exceeding 99 % and a reflection reduction of less than − 20 dB 
at a wavelength of 1504 nm. The ability to precisely control the synaptic 
weights using focused laser irradiation makes this structure a promising 
candidate for implementing optical artificial neural networks.

The proposed design leverages the exceptional properties of photonic 
crystals to achieve precise optical control, extremely compact di
mensions, and ultra-low power consumption. This design is advanta
geous for optical neural networks and processing systems where high 
density and energy efficiency are critical.

The design performance parameters, including the Q-factor and 
FWHM, were optimized by varying the radius and thickness of the 
photonic crystal rods, which improved the optical efficiency.

The proposed structure can accelerate synaptic weights through 
controlled laser pulse irradiation and optimize the learning processes in 
neuromorphic systems, leading to significant progress towards realizing 
all-optical processing systems.

Overall, the proposed design represents a significant step towards the 
development of all-optical neuromorphic computing. Its low power 
consumption, compact size, and high speed make it a promising candi
date for application in optical artificial intelligence, integrated neural 
networks, and optical neuromorphic systems. This design represents an 
advanced and efficient platform for the next generation of optical 
computing and processing, which could significantly contribute to the 
advancement of new technologies in this field.
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