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A B S T R A C T   

In this research paper, we introduce a band-stop filter based on an hourglass-shaped graphene nanoribbon to-
pology. Employing the three-dimensional finite difference time domain (3D-FDTD) method, we conduct 
comprehensive numerical simulations to investigate transmission spectra and electromagnetic field distributions. 
Our primary objectives are to achieve high transmission efficiency, increase tunability, and ensure compact 
dimensions. The hourglass-shaped band-stop filter exhibits a remarkable bandwidth of 1.2 THz, a 90 % trans-
mission efficiency in the passband, an impressive attenuation of − 52.5 dB at the resonance frequency of 32.3 
THz, and a compact footprint of 400×300 nm2. By manipulating the chemical potential (or bias voltage) to 
control the conductivity and dielectric constant of the graphene surface, we set the center frequency of the filter 
in the range of 28 to 36 terahertz. The remarkable combination of high transmission efficiency, high tunability, 
and compact design makes our proposed filter an ideal candidate for integration.   

1. Introduction 

Graphene, an atom-thick two-dimensional structure with carbon 
atoms arranged in a honeycomb lattice, finds numerous applications in 
photonics and optoelectronics within the terahertz frequency range 
(Youngblood et al., 2014). With its complex permittivity, graphene has 
emerged as a unique material, boasting extraordinary properties such as 
exceptional electrical and thermal conductivity, high charge carrier 
density and mobility, reduced losses, resonance mode confinement, 
broad and high-speed performance, and remarkable optical conductivity 
(Farbod et al., 2022; Yao, 2013; Gómez-Díaz and Perruisseau-Carrier, 
2013; Xiang et al., 2014). Doped graphene, akin to metals, supports 
surface plasmon polariton (SPP) modes beyond the mid-infrared region, 
enabling the confinement of electromagnetic waves at sub-wavelength 
scales and overcoming the limitations of light diffraction (Li et al., 
2014; Zhao et al., 2014; Gao et al., 2014; Li et al., 2016). Consequently, 
the excellent properties of graphene have garnered significant attention 
from researchers (Li et al., 2014; Shiramin and Van Thourhout, 2016). 
Table 1. 

A prominent characteristic of graphene lies in its ability to alter the 
chemical potential or Fermi energy through external voltage applica-
tion, leading to changes in conductivity and central frequency (Liu et al., 
2017; Shi et al., 2016; Xiao et al., 2017). Different chemical potentials 

yield varying optoelectronic properties in graphene (Liu et al., 2017; 
Chen et al., 2017). Comparatively, graphene offers distinct advantages 
over noble metals like gold and silver: its plasmon wavelength is much 
shorter, resulting in a strong wave concentration edge of the graphene 
due to these short wavelengths and large propagation constants 
(Christensen et al., 2012b; Shafagh et al., 2021). Moreover, graphene 
exhibits lower losses compared to noble metals (Chorsi and Gedney, 
2016; Wei et al., 2016). As a result of these benefits, graphene-based 
devices have witnessed remarkable progress in recent years, including 
modulators (Liu et al., 2016; Mohsin et al., 2016; Nouman et al., 2016), 
band-stop filters (Melo et al., 2022; Wang et al., 2018), photodetectors 
(Gosciniak et al., 2020; Ryzhii et al., 2020), heaters (Vertuccio et al., 
2019), waveguides (Li et al., 2022; Xing et al., 2018), transistors (Dan-
ielson et al., 2020; Ganguli et al., 2020), switches (Hu et al., 2021; Hu 
and Wang, 2017; Zhou and Song, 2022), absorbers (Nickpay et al., 
2023a; Nickpay et al., 2023b; Nickpay et al., 2022); antennas (Chashmi 
et al., 2019; Chashmi et al., 2020) and sensors (Snapp et al., 2019; 
Mansouri et al., 2023). Among the various devices available, optical 
filters based on graphene find extensive applications in optical receivers 
and telecommunications (Romagnoli, 2018; Kuscu et al., 2021; Li et al., 
2013). 

One of the most fascinating features of graphene is that it can replace 
metals in plasmonic devices. Plasmonic devices based on metals suffer 
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from high energy losses due to ohmic losses (Hajshahvaladi et al., 2022a; 
Danaie and Geravand, 2018; Khani et al., 2020a; Khani et al., 2020b; 
Moradi et al., 2022; Jafari et al., 2021). Graphene, on the other hand, 
has exceptionally low intrinsic losses in the infrared and terahertz 
ranges, making it more efficient for plasmonic applications. Further-
more, it can be integrated with other 2D materials or heterostructures, 
allowing for the creation of complex and multifunctional plasmonic 
devices with tailored properties. Finally, graphene-based plasmonic 
devices are thinner and more compact than their metal or photonic 
crystal counterparts (Hajshahvaladi et al., 2022b; Danaie et al., 2023; 
Nohoji and Danaie, 2022; Danaee et al., 2019; Yousefi and Maleki, 
2023). This is especially useful for miniaturization and flexible or 
wearable applications. 

Band-pass and band-stop filters are particularly widely used filter 
types. In the existing literature, various graphene filters have been 
investigated. In the past few years, several researchers have proposed 
different designs for band-stop filters using graphene waveguides and 
cavities. For instance, in 2017, Ze-Jiang and Jiu-Sheng introduced a 
band-stop filter comprising one graphene waveguide and four cavities, 
with a central frequency of 6 THz. This design achieved a high-Q band- 
rejection terahertz wave filter with an efficiency of 1500 (Ze-Jiang and 
Jiu-Sheng, 2018). Following that, in 2018, Dongwei Zhai et al. presented 
another band-stop filter with a wide range of center wavelengths (CWLs) 
from 2.0 THz to 0.5 THz. Their design boasted high selectivity, and the 
transmission spectrum exhibited minimal attenuation at the cut-off 
frequency (-3dB) (Zhai et al., 2018). In 2019, Morteza Janfaza et al. 
suggested a band-stop and narrow band-pass filter-based on defected 
Bragg gratings. Although their design offered suitable frequency selec-
tion, the transmission spectrum demonstrated lower efficiency in the 
band pass (Janfaza et al., 2019). Building upon these previous studies, in 
2022, Meiping Li et al. introduced a band-stop filter with switchable 
single/double plasmon-induced transparency, utilizing a metal- 
dielectric-metal waveguide. Their filter design allowed for the adjust-
able frequency with changes in chemical potentials, but it did require 
relatively larger dimensions (Li et al., 2022). More recently, in 2023, 
Seyed Abed Zonouri et al. proposed a new band-stop filter using gra-
phene hook-shaped resonators for the terahertz region. This design 
exhibited a high-quality factor of 22.5 % and a dual-band feature, with 
the transmission spectrum showing no significant attenuation at the cut- 
off frequency (Zonouri and Hayati, 2023). 

Despite these advancements, one of the challenges for graphene 
band-stop filters remains in designing an adjustable filter with high 
transmission efficiency while maintaining compact dimensions suitable 
for integrated optical telecommunications devices (Gonçalves and Peres, 
2016). In this context, we presented a novel graphene band-stop filter 
with an hourglass-shaped nanoribbon. The filter appears to have high 
transmission efficiency, excellent tunability, and compact dimensions, 
making it a promising candidate for integrated optical telecommunica-
tion applications. 

2. Numerical analysis of the graphene model 

Surface plasmon polaritons (SPPs) are a form of electromagnetic 
waves that propagate along the boundary between a dielectric material 
and a metal or graphene. SPPs have garnered significant interest due to 
their remarkable attributes, including their ability to surpass the 
refractive limitations and their capacity to control light on a sub- 
wavelength level. As a result, they stand as promising contenders for 
the development of extensively integrated optical circuits (Khani et al., 
2021; Krishnamoorthy et al., 2022; Korani et al., 2023). The propagation 

of electromagnetic waves on a graphene sheet placed over a dielectric 
substrate, which supports SPP wave propagation modes, can be 
analyzed using the dispersion equation (Gonçalves and Peres, 2016). 

β =
2iωεeff ε0

σg
(1)  

The SPP propagation constant (β) in this equation is influenced by 
various parameters, including the angular frequency (ω), the permit-
tivity of vacuum (ε₀), and εeff is the effective permittivity constant of the 
surrounding medium, which is obtained using Eq. (2) (Cai et al., 2018; 
Sepahvandi et al., 2023). 

εeff = ε0 + i
σg

Hω (2)  

The effective permittivity involves the thickness of graphene (H) and the 
optical surface conductivity of graphene (σg), which is obtained through 
the Kubo formula (Xing et al., 2018; Huang et al., 2022; Heydari, 2022). 
The surface optical conductivity of single-layer graphene is influenced 
by interband and intraband transitions, leading to the division of optical 
surface conductivity into inter-band and intra-band terms (Heydari, 
2022; Naghdehforushha and Moradi, 2019). 

σg(ω.μ.Γ.T) = σintera + σinter (3)  
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where ħ= h/2π is the reduced Planck constant, kB= 1.38064852×10− 23 

m2kg
s2k , is the Boltzmann constant, T is the temperature, e =

1.60217662×10− 19 C is the charge of the electron, μc is the chemical 
potential of the graphene sheet, Г= τ− 1 is the scattering rate(eV), and τ is 
the relaxation time (Hu and Wang, 2017; Huang et al., 2022; Shi et al., 
2016; Wang et al., 2012; Zhuang et al., 2016). In the mid-infrared re-
gion, and at room temperature (T = 300 K), Kubo’s equation is reduced 
to equation (6), which is similar to Drud’s equation (Cai et al., 2018; 
Wang et al., 2018; Xiao et al., 2018). 

σg =
ie2μc

πħ2(ω + iτ− 1)
(6)  

To calculate the real and imaginary parts of the mono-layer graphene 
sheet conductivity in the range of 1–50 THz, we utilized the finite- 
difference time-domain (FDTD) method. Setting the scattering rate, 
chemical potential, and temperature to specific values (0.00011 eV, 0.5 
eV, and 300 K, respectively) (Tavana et al., 2022). We obtained accurate 
results, as illustrated in Fig. 1. Where the curve of the analytic data 
closely aligns with the values used in our FDTD model. 

3. Design of graphene-based band-stop filter 

The optical conductivity of graphene exhibits a strong frequency 
dependence (Khani et al., 2020a). The main performance of the band- 
stop filter is primarily influenced by the incidence of high-frequency 
waves at the structure’s input, leading to the excitation of graphene’s 

Table 1 
Band-stop filter specifications in the most optimal conditions.  

Resonance frequency Chemical potential Waveguide length Nanoribbon width Nanoribbon height Bandwidth filter 

32.3 THz 0.5–0.3 eV 320 nm 50 nm 150 nm 1.2 THz  
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surface plasmon polariton (SPP) (Liu et al., 2016). Fig. 2. shows both the 
2D and 3D views of the proposed tunable band-stop filter, which com-
prises a graphene waveguide and an hourglass-shaped graphene ribbon 
placed on a substrate with a dielectric constant of εr = 4 (Gómez-Díaz 
and Perruisseau-Carrier, 2013). The dimensions of the filter structure 
along the x, y, and z axes are 400 nm, 300 nm, and 200 nm, respectively. 
The width of the waveguide of the graphene sheet along the y-axis is 
150 nm and the width of the middle ribbon is 50 nm (Azar et al., 2018). 

In Fig. 3(a), the transmission spectrum with chemical potential for 
graphene waveguide and graphene strip is obtained at 0.5 and 0.3 
electron volts, respectively. The distance between the mode source and 
the transmission spectrum monitor is 320 nm. For the investigation of 
properties and simulation of terahertz wave propagation in the band- 
stop filter, the 3D-FDTD method is employed. Perfectly matched layers 
(PML) are used for boundary conditions along the x and − x directions, 
while a symmetric layer is applied along the -y direction. Metal layers 
are used for +y, − z, and +z directions. The SPP modes are excited along 
the x-axis on the left side of the filter using a light source mode. To 
enhance the accuracy of simulation calculations, a mesh size of 2 nm in 
the x and y directions and 2.5 nm in the z directions was utilized. Ac-
cording to Fig. 3(b), by applying a bias voltage between the graphene 
surface, and the substrate, we can adjust the density of free carriers, 
excite the electron-hole pairs, and change the fermi level and intraband 

losses of graphene, which leads to a change in the chemical potential 
(according to Eq. (7)) and the surface conductivity of graphene (Gómez- 
Díaz and Perruisseau-Carrier, 2013). 

μc = ħ.Vf
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
πε0εrVbias

e.Dsi

√

(7)  

In Eq. (7), Vf and Dsi represent the fermi voltage and the thickness of the 
Si substrate, respectively. These conditions enable us to modify the 
frequency of the filter by selecting and altering the shape of the gra-
phene structure and adjusting the bias voltage. The main advantage of 
this setup is that, following the fabrication process, if necessary, the cut- 
off frequency of the band-stop filter can be conveniently adjusted by 
simply changing the bias voltage and chemical potential (Cai et al., 
2018). 

In graphene-based devices and structures, the chemical potential 
serves as a variable parameter, influencing the surface conductivity of 
graphene as per Eq. (6). Consequently, the surface conductivity changes, 
leading to shifts in the cut-off frequency of the band-stop filter. In Fig. 3 
(b), the representation of the filter’s transfer curve is presented, 
demonstrating an adjustable central frequency spanning from 28.2 THz 
to 36.2 THz. This tuning begins at 28.2 terahertz when μc1 is established 
at 0.42 eV and μc2 at 0.22 eV, as seen in the cyan curve labeled as A. 

Fig. 1. (a) The real versus (b) imaginary parts surface conductivity of graphene varies from 0 to 50 THz.  

Fig. 2. (a) Characteristics and two-dimensional view of band-step filter with hourglass-shaped graphene strip (b) Three-dimensional schematic of the band-stop 
filter THz. 
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Further refinements yield a shift in the central frequency to 29.9 THz by 
assigning μc1 as 0.44 eV and μc2 as 0.24 eV, showcased in the green 
curve designated as B. Similarly, adjusting μc1 to 0.46 eV and μc2 to 0.26 
eV results in a central frequency of 30.7 THz, indicated by the red curve. 
Equally, configuring μc1 to 0.5 eV and μc2 to 0.3 eV (blue curve D) leads 
to a central frequency of 32.3 THz, while implementing μc1 at 0.54 eV 
and μc2 at 0.34 eV (brown curve E) results in a central frequency of 33.9 
THz. Notably, setting the chemical potentials to μc1 of 0.58 eV and μc2 of 
0.38 eV (magenta curve F) generates a central frequency of 35.3 THz. 
Similarly, choosing μc1 as 0.62 eV and μc2 as 0.42 eV (violet curve G) 
achieves the highest central frequency of 36.2 THz. Impressively, the 
central frequency of the filter can be finely adjusted by manipulating the 
chemical potential of graphene within the range of 28 to 36 Hz, yielding 
remarkable outcomes. The most optimal mode demonstrates an atten-
uation coefficient of − 52 dB and a bandwidth of 1.2 THz. 

Fig. 4(a and b) illustrates the electric field magnitude distribution at 
31 and 32.3 terahertz frequencies, for the bandpass and cutoff regions, 
respectively. Additionally, in Fig. 4(c and d), we present the electric field 
distribution (Re (|Ez|)), at these same frequencies. As evident, 

particularly in Fig. 4(a), the field distribution resides along the edge of 
the waveguide and the graphene ribbon. Notably, the field exhibits a 
high intensity within the graphene ribbon. 

4. Results and discussions 

In structures comprising graphene nanoribbons within a graphene 
waveguide, the dispersion relation governing the propagation of surface 
plasmons cannot be derived through analytical means. Consequently, 
numerical full-wave solvers are employed. Two distinct modes of 
propagation surface plasmon polaritons (SPPs) exist in this context. One 
mode entail confining the electromagnetic field at the edges of the 
graphene sheet, while the other involves confining the field along the 
length of the graphene ribbon (Fig. 4(a)). The extent of field confine-
ment is primarily influenced by the relaxation time of graphene, with 
minimal impact on the propagation length of these modes. Furthermore, 
adjusting the chemical potential of graphene provides a means of tuning 
the properties of these modes (Gómez-Díaz and Perruisseau-Carrier, 
2013; Christensen et al., 2012a; Nikitin et al., 2011). 

Fig. 3. (a) Transmission spectrum at the cut-off frequency of 32.3 THz (b) Transmission spectrum of the band-stop filter with changes of μc1 and μc2.  

Fig. 4. (a) Magnitude of the field distribution in the passband region (b) Magnitude of the field distribution in the cutoff frequency region (c) Field distribution (Re (| 
Ez|)) in the passband region (d) Field distribution (Re (|Ex|)) in the propagation mode. 
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In Fig. 5, we explore varying heights of nanoribbon graphene. The 
nanoribbon height of 120 nm leads to a reduction of the transmission 
spectrum, and further reduction of the nanoribbon height to 100 nm 
leads to a significant reduction of the transmission spectrum. However, 
at a nanoribbon height of 150 nm, we observe the most optimal trans-
mission spectrum without any ripple. 

In Fig. 6(a), we investigate distinct widths of graphene nanoribbons. 
Employing a nanoribbon width of 70 nm, a portion of the transmission 
spectrum displays minor ripple, but approaches the optimal condition. 
However, at a nanoribbon width of approximately 50 nm, we achieve 
the highest transmission spectrum devoid of ripple. Using nanoribbon 
40 nm, the transmission spectrum is relatively normal, but there is less 
attenuation at the cutoff frequency compared to the 50 nm nanoribbon. 

In Fig. 6(b), we explore various junction widths between the upper 
and lower segments of the graphene nanoribbon. Employing junction 
widths of 10 nm, 20 nm, 30 nm, and 40 nm induces a slight reduction in 
transmission spectrum intensity, accompanied by minor oscillations 
within the transmission spectrum’s bandpass. Remarkably, adopting a 1 
nm junction width yields the most favorable outcome, characterized by 
the highest attainable transmission spectrum without any ripple. 

By varying the chemical potential ratio of the band-stop filter, we 
observe changes in the bandwidth, central frequency, and output effi-
ciency. Fig. 7(a) illustrates the effects of different chemical potential 
ratios (rμ) on the transition output. For instance, when rμ = 1.66 (μc1 =

0.5 eV and μc2 = 0.3 eV), the transition output (magenta curve) exhibits 
a central frequency of 32.4 THz with an attenuation of − 19 dB. At rμ =
2.0 (μc1 = 0.6 eV and μc2 = 0.3 eV), the transition output (red curve) has 
a central frequency of 33 THz with an attenuation of − 21 dB. Similarly, 
at rμ = 2.33 (μc1 = 0.7 eV and μc2 = 0.3 eV), the transition output (blue 
curve) shows a central frequency of 34.4 THz with an attenuation of 
− 26 dB, and at rμ = 2.66 (μc1 = 0.8 eV and μc2 = 0.3 eV), the transition 
output (cyan curve) exhibits a central frequency of 36 THz with an 
attenuation of − 35 dB. Fig. 7(b) explores the scenario where the 
chemical potential of the graphene waveguide (μc1) is kept constant, 
while only the chemical potential of the graphene nanoribbon (μc2) is 
varied. At rμ = 2.5 (μc1 = 0.5 eV and μc2 = 0.2 eV), the transition output 
(magenta curve) features a central frequency of 30.5 THz with an 
attenuation of − 52.5 dB. When rμ = 2.0 (μc1 = 0.5 eV and μc2 = 0.25 eV), 
the transition output (red curve) exhibits a central frequency of 31.7 THz 
with an attenuation of − 27.5 dB. At rμ = 1.66 (μc1 = 0.5 eV and μc2 = 0.3 
eV), the transition output (blue curve) displays a central frequency of 
32.4 THz with an attenuation of − 19 dB. Finally, at rμ = 1.43 (μc1 = 0.5 
eV and μc2 = 0.35 eV), the transition output (cyan curve) showcases a 

central frequency of 33 THz with an attenuation of − 12.2 dB. The 
calculated bandwidth of the band-stop filter is BW = 1.2 THz. 

Table 2 provides a comparison of the presented band-stop filter with 
various filters reported in recent publications, highlighting different 
characteristics in the terahertz range. Each graphene band-stop filter 
with distinct structures exhibits varying bandwidths and frequencies, 
catering to specific applications and requirements. Notably, the pre-
sented filter stands out with its smaller dimensions (nm2) compared to 
the other filters listed in Table 2, making it advantageous for integration 
into optical telecommunication devices. 

5. The process of fabrication of graphene nanoribbon 

In the field of nanoscale optical devices, obtaining graphene nano-
ribbons (GNRs) with precisely controlled band gaps is a critical 
requirement. Several methods have been introduced to create GNR, one 
of which is electron beam lithography (Luo and Yu, 2022). In this 
method, the electron beam rotates on the sample (which is kept under 
the electrode), then an etching mask with a specific pattern forms the 
GNR structure in the presence of the electron beam. In the next step, the 
etched area is scraped with oxygen plasma and the remaining photo-
resist is removed (Han et al., 2007; Liu et al., 2011). Another method of 
producing graphene nanoribbons is nanoparticle etching (NPE) (Elías, 
2010). In this deposition method, exfoliation of graphene, metal ion 
solution with spin coating, evaporation of water solvent, reduction of 
metal nanoparticles, and etching with heat. NPE has an outstanding 
advantage over EBL and plasma etching that it preserves the obvious 
edge structure of the prepared GNRs, including graphene edges (Jin, 
2016). 

6. Conclusion 

In conclusion, our study investigated the transmission characteristics 
and field distribution of band-stop filters utilizing the three-dimensional 
finite difference in the time domain (3D-FDTD) method. The hourglass- 
shaped graphene band-stop filter demonstrated transmission charac-
teristics, achieving a maximum attenuation of − 52.5 dB at the cut-off 
frequency of 32.3 THz. By varying the bias voltage and chemical po-
tential of graphene by different amounts, we achieved tunability in the 
band-stop filter, manipulating the surface conductivity of graphene and 
thereby shifting the central frequency in the range of 28 to 36 terahertz. 
With its high transmission efficiency, high tunability, and compact di-
mensions, this proposal emerges as a promising choice for compact in-
tegrated optical telecommunication devices. 

Impact Statement: 
The research paper presents a groundbreaking hourglass-shaped 

graphene ribbon band-stop filter with significant implications. 
Achieving a remarkable bandwidth of 1.2 THz and 90% transmission 
efficiency, this innovation holds promise for revolutionizing integrated 
optical telecommunications devices. By enabling high tunability and 
compact dimensions, it addresses a critical challenge in the field and 
opens avenues for advanced optical technology applications. 

Scope Statement: 
The research conducted in this paper focuses on the development 

and characterization of an hourglass-shaped graphene ribbon band-stop 
filter. The study employs the three-dimensional finite difference time 
domain (3D-FDTD) method for comprehensive numerical simulations, 
covering transmission spectra and electromagnetic field distribution. 
The proposed filter’s scope extends to applications in integrated optical 
telecommunication devices, offering high transmission efficiency and 
tunability within the terahertz frequency range (28-36 THz). 
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